electricschool.ru

Генератор из коллекторного двигателя переменного тока 220в. Как самому переделать генератор из асинхронного двигателя? Виды генераторов на базе двигателей

Источники электропитания делят на синхронные и асинхронные в зависимости от типа генератора. В электротехнике, согласно законам физики, существует принцип обратимости энергии: электрические машины, которые могут преобразовывать электрическую энергию в механическую, также могут совершать обратные преобразования. Асинхронный генератор работает на данном принципе: он способен преобразовывать механическую энергию вращения ротора в электроток на обмотке статора. Применяется он на напряжения 220 и 380 В.

Вид асинхронного генератора

В генераторном режиме работы меняется знак скольжения, и двигатели асинхронного типа генерируют электрическую энергию.

Применение

  • Генераторы нашли применение в качестве тяговых электродвигателей на объектах транспортной инфраструктуры в машинах с реостатным и рекуперативным торможением, а также в сельском хозяйстве в устройствах, где нет потребности в компенсации реактивной мощности и высоких требований к качеству поставляемой электроэнергии (где возможны небольшие скачки напряжения, т.к. регулятор параметров отсутствует).
  • Для бытовых нужд асинхронные генераторы применяются в качестве двигателя автономных электростанций, которые приводятся в действие силами природы: энергией падающей воды, силой ветра и др.
  • Еще одним применением является использование генератора в качестве зарядного устройства для аккумуляторных батарей .
  • Для электроснабжения сварочных агрегатов.
  • Обеспечение бесперебойным электропитанием особо важных объектов: холодильников с лекарствами и др.

Это устройство применяется для промышленных целей

Теоретически возможно переоборудование асинхронного двигателя в асинхронный генератор. Для осуществления задачи необходимо:

  • четко понимать, что такое ток;
  • знать физику преобразования механической энергии в электрическую;
  • создать все необходимые условия для появления электротока на обмотке статора.

Устройство асинхронного генератора

Основные узлы асинхронного генератора:

  • Ротор – вращающийся элемент, на котором образуется ЭДС. Тип исполнения – короткозамкнутый. Токопроводящие поверхности изготовлены из алюминия.
  • Ввод кабеля необходим для отпуска полученного электричества.
  • Датчик температуры для обмотки генератора необходим для постоянного мониторинга температуры на этой обмотке.
  • Герметичные фланцы предназначены для уплотнения соединения деталей.
  • Статор, на обмотке которого в процессе генерируется электроэнергия.
  • Обмотка может быть двух типов: однофазная и трехфазная (для напряжения 220 и 380 В), размещена на поверхности статора в виде звезды. 3 точки соединяются между собой, 3 другие – с контактными кольцами.
  • Контактные кольца не имеют электрической связи между собой, закреплены на валу ротора.
  • Щетки необходимы как регулятор, при помощи них происходит запуск трехфазного реостата, за счет чего можно контролировать сопротивление обмотки ротора.
  • Короткозамыкатель применяется для принудительной остановки реостата.

Принцип работы

Во время вращения лопаток ротора на токопроводящей части его начинает появляться электрический ток. Образующееся магнитное поле, наводит на обмотки статора два типа переменного напряжения – однофазное и трехфазное.

Регулировка параметров вырабатываемой энергии осуществляется изменением нагрузки на статоре. Регулятор в схеме отсутствует, т.к. конструктивно устройство не может быть оборудовано данным узлом: отсутствует электрическая связь между ротором и статором.

В каких случаях необходимо применение асинхронных устройств:

  • тяжелые условия работы оборудования – запыленность;
  • нет особых требований к качеству преобразованной энергии (величины частоты и напряжения);
  • нет возможности установки синхронной машины;
  • ограниченный бюджет объекта;
  • существует вероятность перегрузок в переходном процессе работы.

Асинхронные устройства не терпят частых перегрузок во время работы. При работе с завышенной мощностью срабатывает защита. Повторный запуск устройств оказывает негативное влияние на экономический эффект установки.

Т.к. отсутствует регулятор параметров, необходимо подключение измерительных приборов.

Для корректной работы системы и исключения преждевременных ремонтов, необходимо произвести расчет мощности генератора, исходя из предполагаемой нагрузки объекта.

Принцип работы в двухфазном режиме асинхронного генератора применяется для случаев, которые не требуют генерации трехфазного напряжения.

Преимущества:

  • малая рабочая емкость;
  • низкие нагрузки в режиме холостого хода, и как следствие, экономия первичного энергоносителя (ресурс, который приводит в действие ротор).

Недостатки:

  • отсутствует регулятор напряжения тока.

Маломощные генераторы 220 В

В качестве устройства-донора применяются асинхронные электродвигатели с короткозамкнутыми роторами от стиральных машин, бытовых пылесосов, электроприборов полива и аналогичные, в которых конденсаторные батареи подключены в схему параллельно рабочей обмотке. Для повышения эффективности работы увеличивают емкость конденсатора: в меньшей степени для активной нагрузки (лампы, паяльники), и в большей – для индуктивной (например, холодильники, телевизоры и т.п.).

  • Мощность первичного устройства выбирается на 50..100% больше, чем потребляемая мощность асинхронным генератором. Это необходимо для снижения потерь и повышения КПД процесса. Повышения КПД добиваются путем постоянного или кратковременного увеличения оборотов механического элемента.
  • Так как в схеме отсутствует регулятор тока, для стабильной работы установки необходим постоянный контроль параметров, т.е. наличие прибора измерения частоты (тахометра), напряжения (вольтметра) и набора переключателей (для подключения нагрузки на генератор, и два – для коммутации цепи возбуждения. Такая схема упрощает запуск и повышает стабильность работы электрооборудования.
  • В случае присоединения к генератору бытовой сети освещения, в электрической цепи необходимо предусмотреть двухфазный рубильник, который в данном случае будет отключать электроосвещение от стационарной сети.

Однофазные рубильники для отключения применять запрещено в данном случае, т.к. необходимо отключение фазного и нулевого провода.

Эффективность установки

Перед проведением реконструкции необходимо учитывать масштаб экономического эффекта нового оборудования и целесообразность проведения процедуры.

Преимущества устройств:

  1. Низкая себестоимость электроэнергии: для преобразования необходимо наличие магнитного поля, которое генерирует электрический ток.
  2. В токе малое количество высших гармоник: малые потери на собственный нагрев, образование магнитных полей и др.
  3. Высокая надежность.
  4. Отсутствие цепи возбуждения.
  5. Дешевизна готовых моделей.
  6. Возможность переоборудования простейшего асинхронного двигателя в генератор.
  7. Отсутствие в схеме устройства коллекторно-щеточного механизма, что повышает срок эксплуатации.
  8. Отсутствие необходимости обслуживания конденсаторных батарей.

Недостатки:

  1. Невозможность выработать промышленную частоту генерируемого тока.
  2. Отсутствует регулятор параметров сети.
  3. Необходимость включения в схему работы выпрямителей.
  4. Индуктивная нагрузка требует увеличения прилагаемой потребной емкости. Следовательно, возрастает потребность подключения в схему устройства дополнительных конденсаторных элементов. Что впоследствии повышает стоимость установки.
  5. Не меньшая техническая сложность устройства, чем синхронные генераторы.
  6. Высокая чувствительность к перепадам нагрузки. Т.к. для работы устройства используется конденсатор, который забирает энергию (в традиционных генераторах применяют аккумуляторы, имеющие запас мощности), при увеличении нагрузки электроэнергии может не хватить на подзарядку и генерация прекратится. Для предотвращения этого явления используют батареи с изменяемым объемом емкости в зависимости от нагрузки. Применение данного оборудования экономически целесообразно для крупных объектов.

Преобразование двигателя

Принцип преобразования двигателя в простейший асинхронный генератор:

  1. Для модернизации понадобится двигатель от стиральной машины.
  2. Уменьшить толщину стенок сердечника. Для этого необходимо на токарном станке обточить по 2 мм по всей поверхности. Проделать отверстия (несквозные) не более 5мм глубиной.
  3. Из тонкого листа металла либо жести изготовить полосу, размерами соответствующую габаритам ротора.
  4. Установить неодимовые магниты в полученной свободной площади в количестве не менее 8 штук. Зафиксировать суперклеем.

Магниты необходимо прижимать к поверхности до полного застывания, иначе произойдет их смещение. Рекомендовано использовать очки, чтобы клей не попал в глаза в случае выскальзывания магнита.

  1. Плотной бумагой закрыть ротор со всех сторон и зафиксировать края скотчем.
  2. Эффективно загерметизировать мастикой торцевую часть ротора.
  3. Свободное пространство между магнитными элементами заполнить эпоксидной смолой через проделанное отверстие в бумаге.
  4. После застывания смолы убрать слой бумаги.
  5. Отшлифовать поверхность ротора наждачной бумагой, при наличии можно использовать дремель.
  6. Двумя проводами присоединить двигатель к рабочей обмотке. Удалить все неиспользуемые проводники.
  7. При необходимости заменить подшипники на новые.
  8. Установить выпрямитель тока и контроллер зарядки.

Тестирование собранного прибора

При использовании асинхронного генератора, как и других электроустройств, необходимо соблюдать правила техники безопасности:

  • Прибор должен быть защищен от механических воздействий и погодных условий.
  • Рекомендовано изготовление специального защитного кожуха под собранный генератор.
  • Для корректной работы необходим постоянный мониторинг параметров устройства (напряжения, частоты), т.к. отсутствует регулятор величины тока. Установка измерительных приборов позволит контролировать эффективность автономной системы.
  • Самодельный генератор в целях безопасности рекомендовано использовать на напряжение 0,23 кВ.
  • Устройство должно быть присоединено к контуру заземления.
  • Следует избегать длительной работы в режиме холостого хода.
  • Запрещено допускать перегрев оборудования.
  • Генератор необходимо оборудовать кнопкой включения/отключения для оптимизации работы.

При отсутствии знаний основ электротехники специалисты настоятельно рекомендуют приобрести генератор заводского изготовления.

Реконструкция асинхронного двигателя

Процесс состоит из трех этапов:

  1. Подключение конденсаторных батарей к зажимам. После этого на обмотке начинается процесс намагничивания, который обусловлен движением опережающего тока.
  2. Самовозбуждение устройства. Происходит при правильном подборе емкости конденсаторов.
  3. Получение итоговых значений напряжения. Зависят от технических характеристик устройства, типа и емкости конденсаторов.

Модернизация асинхронного двигателя

При правильном выполнении действий можно получить генератор с характеристиками асинхронного двигателя.

Видео

Асинхронные генераторы – полезная вещь в домашнем хозяйстве. Более мощные устройства вполне могут служить в качестве автономных электростанций, которые обеспечат нормальные параметры напряжения и частоты сети.

Один из первых генераторов с возбудителем переменного тока

Экономически целесообразно переоборудовать заведомо рабочий неиспользуемый асинхронный электродвигатель. Только при этом будет наблюдаться экономический эффект, в отличие от приобретения нового устройства.

Несмотря на достаточно трудоемкий принцип модернизации, отсутствующий регулятор параметров сети, самодельные асинхронные генераторы являются хорошим решением для минимизации финансовых затрат на электроэнергию в условиях постоянно растущих цен на энергоносители.

(АГ) является наиболее распространенной электрической машиной переменного тока, применяемой преимуществен­но в качестве двигателя.
Только низковольтные АГ (до 500 В пи­тающего напряжения) мощностью от 0,12 до 400 кВт потребляют более 40% всей вырабатываемой в мире электроэнергии, а годовой их выпуск со­ставляет сотни миллионов, покрывая самые разнообразные потребности промышленного и сельскохозяйственного производства, судовых, авиаци­онных и транспортных систем, систем автоматики, военной и специальной техники.

Эти двигатели сравнительно просты по конструкции, весьма на­дежны в эксплуатации, имеют достаточно высокие энергетические показа­тели и невысокую стоимость. Именно поэтому непрерывно расширяется сфера использования асинхронных двигателей как в новых областях техники, так и взамен более сложных электрических машин различных конструкций.

Например, значительный интерес в последние годы вызывает приме­нение асинхронных двигателей в генераторном режиме для обеспечения питанием как потреби­телей трехфазного тока, так и потребителей постоянного тока через вы­прямительные устройства. В системах автоматического управления, в сле­дящем электроприводе, в вычислительных устройствах широко применя­ются асинхронные тахогенераторы с короткозамкнутым ротором для пре­образования угловой скорости в электрический сигнал.

Применение асинхронного режима генератора


В определенных условиях эксплуатации автономных источников электроэнергии применение асинхронный режим генератора оказывается предпочтительным или даже единственно возможным решением, как, например, в высокоскоростных передвижных электростанциях с безредукторным газотурбинным приво­дом с частотой вращения п = (9…15)10 3 об/мин. В работе описан АГ с массивным ферромагнитным ротором мощностью 1500 кВт при п = =12000 об/мин, предназначенный для автономного сварочного комплекса «Север». В данном случае массивный ротор с продольными пазами прямо­угольного сечения не содержит обмоток и выполняется из цельной сталь­ной поковки, что дает возможность непосредственного сочленения ротора двигателя в генераторном режиме с газотурбинным приводом при окружной скорости на поверхности ро­тора до 400 м/с. Для ротора с шихтованным сердечником и к.з. обмоткой типа «беличья клетка» допустимая окружная скорость не превышает 200 - 220 м/с.

Другим примером эффективного применения асинхронного двигателя в генераторном режиме является давнее их использование в мини-ГЭС при устойчивом режиме нагрузки.

Отличаются простотой эксплуатации и обслуживания, легко включаются на параллельную работу, а форма кривой выходного напря­жения у них ближе к синусоидальной, чем у СГ при работе на одну и ту же нагрузку. Кроме того, масса АГ мощностью 5-100 кВт примерно в 1,3 — 1,5 раза меньше массы СГ такой же мощности и они несут меньший объем обмоточных материалов. При этом в конструктивном отношении они ни­чем не отличаются от обычных АД и возможно их серийное производство на электромашиностроительных заводах, выпускающих асинхронные ма­шины.

Недостатки асинхронного режима генератора,асинхронного двигателя(АД)

Один из недостатков АД - это то, что они являются потребителями значительной реактивной мощности (50% и более от полной мощности), необходимой для создания магнитного поля в машине, которая должна по­ступать из при параллельной работе асинхронного двигателя в генераторном режиме с сетью или от другого ис­точника реактивной мощности (батарея конденсаторов (БК) или синхрон­ный компенсатор (СК)) при автономной работе АГ. В последнем случае наиболее эффективно включение батареи конденсаторов в цепь статора параллельно нагрузке хотя в принципе возможно ее включение в цепь ро­тора. Для улучшения эксплуатационных свойств асинхронного режима генератора в цепь статора допол­нительно могут включаться конденсаторы последовательно или парал­лельно с нагрузкой.

Во всех случаях автономной работы асинхронного двигателя в генераторном режиме источники реактивной мощ­ности (БК или СК) должны обеспечивать реактивной мощностью как АГ, так и нагрузку, имеющую, как правило, реактивную (индуктивную) со­ставляющую (соsφ н < 1, соsφ н > 0).

Масса и размеры конденсаторной батареи или синхронного компен­сатора могут превосходить массу асинхронного генератора и только при соsφ н =1 (чисто актив­ная нагрузка) размеры СК и масса БК сопоставимы с размером и массой АГ.

Другой, наиболее сложной проблемой является проблема стабилиза­ции напряжения и частоты автономно работающего АГ, имеющего «мяг­кую» внешнюю характеристику.

При использовании асинхронного режима генератора в составе автономной эта проблема ос­ложняется еще и нестабильностью частоты вращения ротора. Возможные и применяемые в настоящее способы регулирования напряжения асинхронном режиме генератора.

При проектировании АГ для оптимизационные расчеты следует вести по максимуму КПД в широком диапазоне изменения частоты враще­ния и нагрузки, а также по минимуму затрат с учетом всей схемы управле­ния и регулирования. Конструкция генераторов должна учитывать клима­тические условия работы ВЭУ, постоянно действующие механические усилия на элементы конструкции и особенно — мощные электродинамиче­ские и термические воздействия при переходных процессах, которые возникают при пусках, перерывах питания, выпадении из синхронизма, ко­ротких замыканиях и других, а также при значительных порывах ветра.

Устройство асинхронной машины,асинхронного генератора

Устройство асинхронной машины с короткозамкнутым ротором по­казано на примере двигателя серии АМ (рис. 5.1).

Основными частями АД являются неподвижный статор 10 и вра­щающийся внутри него ротор, отделенный от статора воздушным зазором. Для уменьшения вихревых токов сердечники ротора и статора набираются из отдельных листов, отштампованных из электротехнической стали тол­щиной 0,35 или 0,5 мм. Листы оксидируются (подвергаются термической обработке), что увеличивает их поверхностное сопротивление.
Сердечник статора встраивается в станину 12, являющуюся внешней частью машины. На внутренней поверхности сердечника имеются пазы, в которых уложена обмотка 14. Статорную обмотку чаще всего делают трехфазной двухслойной из отдельных катушек с укороченным шагом из изолированного медного провода. Начала и концы фаз обмотки выводят на зажимы коробки выводов и обозначают так:

начала - СС2, С 3 ;

концы - С 4, С5, Сб.

Обмотку статора можно соединить звездой (У) или треугольником (Д). Это дает возможность применять один и тот же двигатель при двух различных линейных напряжениях, находящихся в отношении напри­мер, 127/220 В или 220/380 В. При этом соединению У соответствует включение АД на высшее напряжение.

Сердечник ротора в собранном виде запрессовывается на вал 15 го­рячей посадкой и предохраняется от проворачивания при помощи шпонки. На внешней поверхности сердечник ротора имеет пазы для укладки обмот­ки 13. Обмотка ротора в наиболее распространенных АД представляет со­бой ряд медных или алюминиевых стержней, расположенных в пазах и замкнутых по торцам кольцами. В двигателях мощностью до 100 кВт и бо­лее обмотка ротора выполняется заливкой пазов расплавленным алюми­нием под давлением. Одновременно с обмоткой отливаются и за­мыкающие кольца вместе с вентиляционными крылатками 9. По форме та­кая обмотка напоминает «беличью клетку».

Двигатель с фазным ротором.Асинхронный режим генератор а.

Для специальных асинхронных двигателях обмотка ротора может выполняться по­добно статорной. Ротор с такой обмоткой помимо указанных частей имеет три укрепленных на валу контактных кольца, предназначенных для соеди­нения обмотки с внешней цепью. АД в этом случае называется двигателем с фазным ротором или с контактными кольцами.

Вал ротора 15 объединяет все элементы ротора и служит для соеди­нения асинхронного двигателя с исполнительным механизмом.

Воздушный зазор между ротором и статором составляет от 0,4 — 0,6 мм для машин малой мощности и до 1,5 мм у машин большой мощности. Подшипниковые щиты 4 и 16 двигателя служат опорой для подшипников ротора. Охлаждение асинхронного двигателя осуществляется по принципу самообдува вентилятором 5. Подшипники 2 и 3 закрыты снаружи крышка­ми 1 , имеющими лабиринтовые уплотнения. На корпусе статора устанав­ливается коробка 21с выводами 20 обмотки статора. На корпусе укрепля­ется табличка 17, на которой указываются основные данные АД. На рис.5.1 обозначено также: 6 — посадочное гнездо щита; 7 — кожух; 8 — корпус; 18 — лапа; 19 - вентиляционный канал.

Желание разработать автономный источник по производству электроэнергии позволил соорудить генератор из обычного асинхронного мотора. Разработка отличается надежность и относительной простотой.

Виды и описание асинхронного двигателя

Существует два вида моторов:

  1. Короткозамкнутый ротор . Он включает в себя статор (недвижимый элемент) и ротор (вращающийся элемент), движущийся за счет работы подшипников, прикрепленных к двум щиткам мотора. Сердечники изготовлены из стали, а также они изолированы друг от друга. По пазам статорного сердечника расположен изолированный провод, а по пазам роторного устанавливается стержневая обмотка либо льется растопленный алюминий. Специальные кольца-перемычки играют роль замыкающего элемента роторной обмотки. Самостоятельные разработки преобразовывают механические движения мотора и создают электроэнергию переменного напряжения. Их преимущество – нет в наличии коллекторно-щелочного механизма, что делает их более надежными и долговечными.
  2. Фазный ротор – дорогой прибор, требующий специализированного сервиса. Состав такой же, как и у ротора с коротким замыканием. Единственное исключение роторная и статорная обмотка сердечника выполнена из заизолированного провода, а ее концы подсоединяют к кольцам, прикрепленным к валу. По ним проходят специальные щетки, которые объединяют провода с регулировочным либо пусковым реостатом. Из-за низкого уровня надежности его используют лишь для тех отраслей производства, для которых он предназначен.

Область применения

Устройство используется в разных отраслях:

  1. Как обычный двигатель для электростанций, работающих от ветра.
  2. Для собственного независимого питания квартиры либо дома.
  3. Как небольшие ГЭС-станции.
  4. Как альтернативный инверторный тип генератора (сварочный).
  5. Для создания бесперебойной системы питания от переменного тока.

Преимущества и недостатки генератора

К положительным качествам разработки принадлежат:

  1. Простая и быстрая сборка с возможностью избежать разборки электродвигателя и перемотки обмотки.
  2. Способность осуществлять вращение электротока с помощью ветряной либо гидротурбины.
  3. Применение устройства в системах мотор-генератор, чтобы преобразовать однофазную сеть (220В) на трехфазную (380 В).
  4. Способность использовать разработку в местах отсутствия электричества, применяя для раскрутки двигатель внутреннего сгорания.

Минусы:

  1. Проблематичность расчета емкости конденсата, который присоединяется к обмоткам.
  2. Сложно достичь максимальной отметки мощности, на которую способна самостоятельная разработка.

Принцип работы

Генератор вырабатывает электрическую энергию при условии, что количество оборотов ротора несколько выше синхронной скорости. Самый простой тип вырабатывает порядка 1800 об/мин., учитывая, что уровень его синхронной скорости становится 1500 оборотов.

Его принцип действия основывается на переработке механической энергии в электроэнергию. Заставить ротор вращаться, и производить электричество можно с помощью сильного крутящегося момента. В идеальном варианте – постоянный холостой ход, который способен поддерживать одинаковую скорость движения.

Все виды моторов, работающие от силы непостоянного тока, называются асинхронными. У них магнитное поле статора кружится скорее, чем поле ротора, соответственно направляя его в сторону своего движения. Чтобы изменить электромотор на функционирующий генератор понадобится повысить скорость передвижения ротора, чтобы он не следовал за магнитным полем статора, а начал двигаться в другую сторону.

Получить подобный результат можно, подключив прибор к электросети, с большой емкостью или целую группу конденсаторов. Они заряжаются и скапливают энергию от магнитных полей. Фаза конденсатора имеет заряд, который противоположен источнику тока мотора, из-за чего происходит замедление работы ротора, и начинается выработка тока статорной обмоткой.


Схема генератора

Схема очень простая и не нуждается в наличии специальных знаний и умений. Если запустить разработку не подключая ее к сети, начнется вращение и, после выхода на синхронную частоту, статорная обмотка станет образовывать электрическую энергию.

Прикрепив к ее зажимам специальную батарею из нескольких конденсаторов (С) можно получить опережающий емкостный ток, который будет создавать намагничивание. Емкость конденсаторов должна быть выше критического обозначения С 0 , которое зависит от габаритов и характеристик генератора.

В данной ситуации происходит процесс самостоятельного запуска, а на статорной обмотке монтируется система с симметричным трехфазным напряжением. Показатель создаваемого тока напрямую зависит от емкости для конденсаторов, а также характеристики машины.


Делаем своими руками

Чтобы преобразовать электромотор в работоспособный генератор понадобиться применять неполярные конденсаторные батареи, поэтому электролитические конденсаторы лучше не использовать.

В трехфазном моторе подключить конденсатор можно по таким схемам:

  • «Звезда» – дает возможность провести генерацию при меньшем количестве оборотов, но с более низким выходным напряжением;
  • «Треугольник» – вступает в работу при большом количестве оборотов, соответственно вырабатывает больше напряжения.

Можно создать собственное устройство из однофазного мотора, но при условии, что он оборудован ротором с коротким замыканием. Чтобы запустить разработку следует воспользоваться фазосдвигающим конденсатором. Однофазный мотор коллекторного типа для переделки не подходит.


Необходимые инструменты

Создать собственный генератор несложно, главное иметь все необходимые элементы:

  1. Асинхронный мотор.
  2. Тахогенератор (прибор для измерения тока) или же тахометр.
  3. Емкость под конденсаторы.
  4. Конденсатор.
  5. Инструменты.

Пошаговое руководство

  1. Поскольку понадобится перенастроить генератор таки образом, чтобы скорость вращений превышала обороты мотора , первоначально необходимо подсоединить двигатель к электросети и завести. Затем с помощью тахометра определить скорость его вращений.
  2. Узнав скорость, следует к полученному обозначению прибавить еще 10%. Например, технический показатель мотора 1000 об/мин, то у генератора должно быть порядка 1100 об/мин (1000*0,1%=100, 1000+100=1100 об/мин).
  3. Следует подобрать емкость под конденсаторы. Чтобы определиться с размерами используйте данные таблицы.

Таблица конденсаторных емкостей

Мощность генератора КВ А Холостой ход
Емкость Мкф Реактивная мощность Квар COS=1 COS=0.8
Емкость Мкф Реактивная мощность Квар Емкость Мкф Реактивная мощность Квар
2,0 28 1,27 36 1,63 60 2,72
3,5 45 2,04 56 2,54 100 4,53
5,0 60 2,72 75 3,4 138 6,25
7,0 74 3,36 98 4,44 182 8,25
10,0 92 4,18 130 5,9 245 11,1
15,0 120 5,44 172 7,8 342 15,5

Важно! Если емкость будет большой, то генератор начнет нагреваться.

Подберите соответствующие конденсаторы, которые смогут обеспечить требуемую скорость вращений. Будьте осторожны при установке.

Важно! Все конденсаторы должны быть заизолированы специальным покрытием.

Устройство готово и может использоваться в качестве источника электроэнергии.

Важно! Прибор с короткозамкнутым ротором создает высокое напряжение, поэтому если необходим показатель в 220В, следует дополнительно установить понижающий трансформатор.

Генератор на магнитах

Магнитный генератор имеет несколько отличий. Например, он не нуждается в установке конденсаторных батарей. Магнитное поле, которое будет создавать электричество в обмотке статора, создается за счет ниодимовых магнитов.

Особенности создания генератора:

  1. Необходимо открутить обе крышки двигателя.
  2. Понадобится устранить ротор.
  3. Ротор необходимо проточить, сняв верхний слой нужной толщины (толщина магнита + 2мм). Самостоятельно выполнить данную процедуру без токарного оборудования крайне сложно, поэтому следует обратиться в токарный сервис.
  4. Сделайте шаблон для круглых магнитиков на листе бумаги , исходя из параметров диаметр 10-20 мм, толщина около 10 мм, а присягающая сила порядка 5-9 кг на см 2 . Подбирать размер следует в зависимости от габаритов ротора. Затем прикрепите созданный шаблон на ротор и разместите магнитики полюсами и под углом 15-20 0 к оси ротора. Ориентировочное количество магнитов в одной полоске около 8 штук.
  5. У вас должно выйти 4 группы полос, каждая по 5 полосок. Между группами должно сохраняться расстояние величиной в 2 диаметра магнита, а между полосками в группе – 0,5-1 диаметр магнита. Благодаря данному расположению ротор не будет залипать к статору.
  6. Установив все магниты, следует залить ротор специальной эпоксидной смолой. Как только она высохнет, покройте цилиндрический элемент стекловолокном и снова пропитайте смолой. Такое крепление позволит избежать вылету магнитов в момент движения. Следите, чтобы диаметр у ротора был таким же, как до проточки, чтобы при установке он не терся об статорную обмотку.
  7. Просушив ротор, его можно установить на место и прикрутить обе крышки двигателя.
  8. Провести испытания. Для запуска генератора понадобится поворачивать ротор с помощью электродрели, а на выходе вымерять полученный ток тахометром.


Переделывать или нет

Чтобы определить, эффективна ли работа самостоятельно сделанного генератора, следует просчитать, насколько оправданы усилия по преобразованию устройства.

Нельзя сказать, что устройство очень простое. Двигатель асинхронного двигателя не уступает по сложности синхронному генератору. Единственное отличие отсутствие электрической цепи для возбуждения работы, но она заменяется батареей конденсаторов, что ничем не упрощает устройство.

Преимущество конденсаторов в том, что они не требуют дополнительного обслуживания, а энергию получают от магнитного поля ротора или производимого электрического тока. Из этого можно сказать, что единственный плюс от этой разработки – отсутствие необходимости в обслуживании.

Еще одно положительное качество – эффект клирфактора. Он заключается в отсутствии высших гармоник в генерируемом токе, то есть чем ниже его показатель, тем меньше расходуется энергии на обогрев, магнитное поле и иные моменты. У трехфазного электромотора этот показатель составляет около 2%, в то время когда у синхронных машин он минимум 15%. К сожалению, учет показателя в быту, когда в сеть включены разнотипные электроприборы, нереален.

Другие показатели и свойства разработки отрицательные. Он не способен обеспечивать номинальную промышленную частоту производимого напряжения. Поэтому устройства применяют вместе с выпрямительными машинами, а также для зарядки аккумулятора.

Генератор чувствителен к малейшим перепадам электричества. В промышленных разработках для возбуждения применяется аккумулятор, а в самодельном варианте часть энергии уходит на батарею конденсаторов. В случае, когда нагрузка на генератор выше номинала, ему не достаточно электричества для подзарядки, и он останавливается. В некоторых случаях применяют емкостные батареи, которые меняют свой динамический объем в зависимости от нагрузки.

  1. Устройство очень опасно, поэтому не рекомендуется использовать напряжение в 380 В , разве что при крайней необходимости.
  2. Согласно с мерами предосторожности и техникой безопасности необходимо дополнительно установить заземление.
  3. Следите за тепловым режимом разработки. Ему не присуще работать при холостом ходу. Чтобы уменьшить тепловое воздействие следует хорошо подобрать конденсаторную емкость.
  4. Правильно просчитайте мощность производимого электрического напряжения. Например, когда в трехфазном генераторе функционирует лишь одна фаза, значит, мощь составляет 1/3 от общей, а если работает две фазы соответственно 2/3.
  5. Есть возможность косвенным образом контролировать частоту непостоянного тока. Когда прибор работает вхолостую выходящее напряжение начинает увеличиваться, и превышает показатели промышленного (220/380В) на 4-6%.
  6. Лучше всего изолировать разработку.
  7. Следует оснастить самодельное изобретение тахометром и вольтметром , чтобы фиксировать его работу.
  8. Желательно предусмотреть специальные кнопки для включения и выключения механизма.
  9. Уровень КПД будет понижаться на 30-50% , данное явление неизбежно.

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от , обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).


Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.


Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.


Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе , а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.


Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают , их используют для мощных мобильных и .

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):


Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

Ёмкость конденсатора (мкФ) при средней нагрузке

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.


Рис. 7. Схема подключения конденсаторов

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

В статье рассказано о том, как построить трёхфазный(однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели-самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части - статора и подвижной части - ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название-короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы - трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Рис.1 Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U2·C·10 -6,

где С - ёмкость конденсаторов, мкФ.

Мощность генератора,

Холостой ход

ёмкость,

реактивная мощность,

ёмкость,

реактивная мощность,

ёмкость,

реактивная мощность,

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости.

Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы.

Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте.

Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.

Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.

В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

· бытовые сварочные трансформаторы;

· электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);

· электропечи типа "Россиянка", "Мечта" мощностью до 2 кВт;

· электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов.

Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии. Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт.

Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме - "резки" металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соs φ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ- косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит "драгоценное" топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа "Ока", "Волга", поливальных насосов "Агидель", "БЦН" и пр. У них конденсаторная батарея должна подключаться параллельно рабочей обмотке. Можно использовать уже имеющийся фазосдвигающий конденсатор, подключив его к рабочей обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) - больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других - коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы - ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: "фазу" и "ноль".

В заключение несколько общих советов.

Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

Обратите внимание на тепловой режим генератора. Он "не любит" холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы - 2/3 общей мощности генератора.

Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме "холостого хода" должно на 4…6 % превышать промышленное значение 220 В /380 В.

Литература:

Л.Г. Прищеп Учебник сельского электрика. М.: Агропромиздат, 1986.
А.А. Иванов Справочник по электротехнике.- К.: Высшая школа, 1984.
cm001.narod.ru

"Сделай сам" 2005, № 3, с.78 - 82



Загрузка...