electricschool.ru

Реактивная мощность, и как её компенсировать. Современная электроэнергетика

Страница 102 из 130

14.2. Потребители и источники реактивной мощности

Рассмотрим более подробно составляющие баланса реактивной мощности в ЭЭС. В уравнении баланса к мощности генераторов электростанций должна быть добавлена реактивная мощность компенсирующих устройств SQ КУ, а также реактивная мощность, генерируемая емкостью высоковольтных линий электропередачи SQ С

Потребители реактивной мощности. Каждый потребитель электроэнергии характеризуется потребляемой активной мощностью Р, преобразуемой механизмами и приборами в другие виды энергии (механическую, тепловую, световую и др.). Потребление реактивной мощности Q нагрузкой определяется коэффициентом мощности tg j = Q/P. Основными потребителями реактивной мощности являются асинхронные двигатели (tg j = 0,75-1,3), индукционные печи (tg j = 1-2,7), вентильные преобразователи (tg j = 0,75-1,2), сварочные агрегаты (tg j = 1,5-2,7) и т.д. Промышленные предприятия - это основные потребители реактивной мощности, и доля асинхронной нагрузки в потребляемой ими реактивной мощности достигает 60-70 %. В городских электрических сетях потребление реактивной мощности меньше. Реактивная нагрузка квартир зависит от насыщенности электробытовой техникой и типа плит для приготовления пищи. В часы вечернего максимума нагрузки для квартир с газовыми плитами tg j = 0,5, для квартир с электроплитами tg j = 0,35. Силовая нагрузка общедомовых электроприемников (лифты, насосы, вентиляция и т. п.) увеличивает потребление реактивной мощности на вводе в дом, так как для привода этих электроприемников используются асинхронные электродвигатели.

Потери реактивной мощностих. Основная часть потерь реактивной мощности приходится на потери в трансформаторах и воздушных линиях (ВЛ) электрической сети. Так, потери реактивной мощности в трансформаторе составляют 10-12 % передаваемой полной мощности. При передаче электроэнергии от электростанции до электроприемников происходит не менее четырех трансформаций, и поэтому эти потери могут достигать приблизительно 50 % полной мощности электроприемников. Потери реактивной мощности в ВЛ зависят от длины линии и протекающего по ней тока. Передаваемая по линии мощность может быть оценена по пропускной способности линии, которая, в свою очередь, может характеризоваться натуральной мощностью Р нат. При передаче по ВЛ натуральной мощности потери реактивной мощности равны реактивной мощности Q C , генерируемой линией. Величина Р нат слабо зависит от сечения проводов, определяется волновым сопротивлением линии и в среднем равна: для ВЛ 110 кВ - 30 МВт, 220 кВ - 135 МВт, 500 кВ - 900 МВт.

Зарядная мощность линий. Емкостная проводимость ВЛ учитывается при напряжениях 110 кВ и выше. Зарядная мощность линии Q C зависит от номинального напряжения и ее длины. Например, генерация реактивной мощности в линии длиной 100 км составляет: при напряжении 110 кВ - 3,5 Мвар, 220 кВ - 14 Мвар, 500 кВ - 90 Мвар. Для средних длин линий, характерных для каждого номинального напряжения, зарядная мощность составляет от 6 до 30 % натуральной мощности линии, повышаясь с увеличением напряжения ВЛ.

Генераторы электростанций являются основными источниками реактивной мощности. Номинальный коэффициент мощности генераторов, равный отношению активной мощности генератора Р г к его полной мощности S г (cos j г = P г /S г), составляет 0,85-0,9, и, значит, выработка реактивной мощности генераторами не может превышать 0,5-0,6 генерируемой ими активной мощности. Это означает, что генераторы электростанций не могут обеспечить всей потребности в реактивной мощности. Поэтому в ЭЭС широко применяются компенсирующие устройства. К ним относятся:

  • конденсаторные батареи (КБ), применяемые в основном на напряжении 0,22-10 кВ. Будучи установленными в узлах нагрузки, они позволяют частично разгрузить электрические сети от передачи по ним реактивной мощности;
  • синхронные компенсаторы (СК) - синхронные машины, работающие без нагрузки на валу, т.е. в режиме холостого хода. Синхронные компенсаторы выпускаются сравнительно большой мощности (50-320 MB · А) и устанавливаются, как правило, на районных подстанциях, где график нагрузки меняется в широких пределах, в связи с чем существенно изменяется баланс реактивной мощности. Как правило, это подстанции напряжением 330-500 кВ и выше, где СК устанавливаются на шинах низшего напряжения (10-20 кВ). Синхронный компенсатор может быть снабжен устройством автоматического регулирования возбуждения, и при снижении напряжения он автоматически будет увеличивать выработку реактивной мощности, тем самым стабилизируя напряжение;
  • статические тиристорные компенсаторы (СТК) состоят из параллельно включенных управляемых реакторов и КБ, которые подключаются к сети высокого напряжения через трансформатор. Для регулирования реактивной мощности используются тиристоры. Такое сочетание реакторов и КБ позволяет использовать СТК как для генерации (при преобладании емкостного элемента), так и для потребления реактивной мощности (при преобладании индуктивного элемента). Статические тиристорные компенсаторы выпускаются большой номинальной мощности и устанавливаются на промежуточных и конечных подстанциях мощных электропередач, а также в крупных узлах нагрузки для стабилизации режима сети при резкопеременном характере нагрузки. Использование СТК в питающих сетях позволяет: стабилизировать напряжение в месте подключения СТК; уменьшить потери активной мощности в электропередаче; увеличить пропускную способность линии и тем самым устранить необходимость сооружения новой линии; улучшить условия регулирования напряжения; демпфировать колебания мощности и напряжения;
  • шунтирующие реакторы (ШР) используются для потребления излишней реактивной мощности в ЭЭС и ввода напряжений в допустимую область. Реакторы абсолютно необходимы при наличии в ЭЭС протяженных воздушных линий сверхвысокого напряжения, которые, как указывалось выше, генерируют реактивную мощность, вследствие чего возможно увеличение напряжений на элементах ЭЭС сверх допустимых значений. Устанавливаются реакторы на конечных и промежуточных подстанциях длинных линий электропередач, их включение и отключение производится дежурным персоналом по распоряжению диспетчера ЭЭС. Использование регулируемых ШР позволяет осуществить стабилизацию напряжения в точке подключения реактора.

Полная мощность, которая вырабатывается генератором, включает активную и реактивную составляющие:

Модуль полной мощности может быть найден через активную мощность и коэффициент мощности генератора:

Изменение реактивной мощности происходит при изменении тока возбуждения . В номинальном режиме при номинальном коэффициенте мощности генератор вырабатывает номинальные значения активной Р ном и реактивной Q ном мощностей. Генератор может увеличить выработку реактивной мощности сверх номинальной, но при снижении выработки активной мощности по отношению к номинальной. Такое увеличение допускается в пределах, которые ограничиваются номинальными значениями токов статора и ротора.

Условия ограничения по выработке реактивной мощности можно определить их векторной диаграммы. Схема замещения генератора для построения векторной диаграммы представлена на рис. 16.3. В нее генератор входит синхронным индуктивным сопротивлением x d и ЭДС E q .

Величина комплексной ЭДС равна сумме векторов U г и падения напряжения в сопротивлении x d :

E q = U г + j .

Построим ВД (рис. 16.4).

По действительной оси откладываем напряжение U г. Получаем точку а . Под углом φ ном откладываем ток I ном. Раскладываем его на активную I нома и реактивную I номр составляющие. Из точки а x d от реактивной составляющей номинального тока . Он совпадает по направлению с напряжением U г. Получаем точку с . Из точки с откладываем вектор падения напряжения в сопротивлении x d от активной составляющей номинального тока . Этот вектор перпендикулярен напряжению U г. Получаем точку b . Вектор – это вектор полного падения напряжения от номинального тока в сопротивлении x d : . Соединяем начало координат с точкой b . Вектор пропорционален ЭДС E q и току возбуждения .

Из начала координат радиусом равным E q проведем дугу. Она определяет допустимые значения тока возбуждения или ЭДС E q по условиям нагрева ротора генератора. Из точки а радиусом проведем дугу. Она определяет допустимые параметры генератора по условиям нагрева статора.


Стороны треугольника abc пропорциональны следующим величинам:

.

Рассмотрим работу генератора при угле , то есть при (при пониженном косинусе). Построение векторной диаграммы выполняется аналогично. Получим треугольник Допустимый для генератора режим соответствует значению ЭДС E q1 . В этом случае имеем:

(отрезок ас 1 > ас ); (отрезок аb 1 < аb ).

Таким образом, генератор может выдавать реактивную мощность большую чем номинальная

но при снижении активной мощности по отношению к номинальной

Генератор при работе с повышенным косинусом (и ) вырабатывает активную мощность большую, чем номинальная. При этом реактивная мощность становится меньше номинальной:

P 2 > P ном и Q 2 < Q ном.

Значение ЭДС E q2 ограничивается нагревом статора.

Работа генератора при большей, чем номинальная, активной мощности связана с перегрузкой турбины и не всегда допустима.

Возможность увеличения реактивной мощности за счет уменьшения активной допустимо использовать в случае избытка активной мощности, то есть в режиме минимальной нагрузки. В этом случае часть генераторов может переводится на работу с пониженным коэффициентом мощности.

Резерв реактивной мощности и возможность перегрузок по реактивной мощности важны при аварийном снижении напряжения. Все генераторы имеют устройства АВР, которые при снижении напряжения на зажимах генераторов автоматически увеличивают ток возбуждения и выработку реактивной мощности.

Лекция № 16

Реактивная мощность в энергосистеме. Потребители реактивной

Мощности. Выработка реактивной мощности генераторами ЭС

    Общие положения.

    Регулирующий эффект нагрузки.

    Потребители реактивной мощности.

    Генерация реактивной мощности генераторами ЭС.

Общие положения

Из баланса реактивной мощности в энергосистеме следует, что в случае, когда генерация реактивной мощности превышает ее потребление, напряжение в сети возрастает. При дефиците реактивной мощности – напряжение уменьшается. Этот вывод мы уже получали, когда рассматривали векторную диаграмму линии электропередачи напряжением 110 кВ. Емкостный ток ЛЭП, работающей на холостом ходу, или, другими словами, мощность, генерируемая ЛЭП, повышает напряжение в конце ЛЭП.

В отличие от баланса активной мощности, баланс реактивной мощности не может в полной мере определить требования, которые предъявляются к источникам реактивной мощности. Если активную мощность вырабатывают только генераторы электростанций, то реактивную мощность можно получить от дополнительных источников, которые могут устанавливаться вблизи потребителей. Эти дополнительные источники называются компенсирующими установками.

При проектировании электрической сети нужно проверять баланс реактивной мощности как в целом по энергосистеме, так и в отдельных ее частях. При этом следует учитывать и необходимость резерва реактивной мощности.

Баланс реактивной мощности следует предусматривать отдельно для каждого режима сети. Характерными режимами в системе являются:

    режим наибольшей реактивной нагрузки. Для режима характерно наибольшее потребление реактивной мощности и наибольшая мощность компенсирующих устройств;

    режим наибольшей активной нагрузки. Режим связан с наибольшей загрузкой генераторов активной мощности при наименьшей выработке реактивной мощности;

    режим наименьшей активной нагрузки. В этом режиме часть генераторов отключают. Выработка реактивной мощности генераторами электро-станций уменьшается;

    послеаварийные и ремонтные режимы. В этих режимах наибольшие ограничения по передаче реактивной мощности.

Если в энергосистеме наблюдается дефицит активной мощности, то он покрывется за счет избытка активной мощности в других системах. Для покрытия недостатка реактивной мощности ее экономичнее генерировать компенсирую-щими устройствами, которые устанавливаются в данной энергосистеме, а не передавать из соседних систем.

Регулирующий эффект нагрузки

Изменение активной и реактивной от напряжения происходит по статическим характеристикам (рис. 16.1). Рассмотрим, каким образом реагирует нагрузка на изменение режима в простейшей системе (рис. 16.2).

Внормальном режиме работы на шинах нагрузки поддерживается номинальное напряжение. Потребитель берет из сети мощность равнуюP 2 + j Q 2 .

При постоянном напряжении в начале ЛЭП, напряжение на ее конце может быть рассчитано сле-дующим образом:



Предположим, что напряжение в конце ЛЭП уменьшается. В соответствии со статическими характеристиками, активная и реактивная мощности потребителя, будут уменьшаться.

Следовательно, будут уменьшаться мощность в конце ЛЭП

и потеря напряжения

, а напряжение в конце ЛЭП

будет увеличиваться.

Этот вывод справедлив, когда напряжение в конце ЛЭП будет больше критического напряжения:


.

Критическое напряжение составляет (0,7 – 0,8) от U ном.

Таким образом, при напряжениях больших чем критическое, нагрузка, изменяя свою мощность, стремится поддержать неизменным напряжение на своих шинах. В этом случае говорят о положительном регулирующем эффекте нагрузки.

При напряжениях меньших чем критическое проявляется отрицательный регулирующий эффект нагрузки. Активная мощность потребителя в соответствии со статическими характеристиками уменьшается. Потребление реактивной мощности начинает возрастать. Причем, значение реактивной мощности увеличивается в большей степени, чем снижение активной. Следовательно, активная мощность в конце ЛЭП уменьшается

, реактивная мощность увеличивается

. Потеря напряжения на участке увеличивается

, а напряжение на шинах нагрузки снижается

Это приводит к увеличению потребления реактивной мощности и дальнейшему снижению напряжения

и т.д. Возникает явление, которое называется лавиной напряжения. При такой аварии тормозятся асинхронные двигатели. Реактивная мощность асинхронных двигателей растет, баланс реактивной мощности нарушается, причем потребление реактивной мощности в значительной мере превышает выработку:


.

Это в свою очередь приводит к понижению напряжения. Остановить снижение напряжения при этой аварии можно, лишь отключив нагрузку.

Чтобы напряжение не снижалось ниже критического на генераторах и мощных синхронных двигателях устанавливаются автоматические регуляторы возбуждения (АРВ). Под их действием генераторы и синхронные двигатели увеличивают выработку реактивной мощности.

Потребители реактивной мощности

Работа потребителей емкостного характера основана на создании электрического поля, энергия которого в нечетную четверть (первая, третья) периода отдается источнику, а в четную четверть (вторая, четвертая) периода берется от источника. Для потребителей индуктивного характера работа основана на создании магнитного поля. При этом в нечетную четверть (первая, третья) периода энергия берется от источника, а в четную четверть (вторая, четвертая) периода отдается источнику.

Колебания энергии в магнитном и электрическом полях различных устройств переменного тока обусловливает потребление ими реактивной индуктивной или реактивной емкостной мощности. В инженерной практике под реактивной мощностью подразумеваютиндуктивную мощность, которая потребляется индуктивными элементами электрической системы, и генерируется в емкостных элементах.

Основными потребителями реактивной мощности в электрических системах являются трансформаторы, воздушные линии электропередач, асинхронные двигатели, вентильные преобразователи, индукционные электропечи, сварочные агрегаты.

На промышленных предприятиях основными потребителями реактивной мощности являются асинхронные двигатели. На их долю приходится 65-70 % реактивной мощности, которая потребляется предприятием. 20-25% потребления реактивной мощности приходится на трансформаторы предприятий и около 10 % – на другие приемники и линии электропередач.

Суммарные потери реактивной мощности в сети составляют около 50 % от мощности, поступающей в сеть. Это гораздо больше, чем потери активной мощности. Для сравнения, среднестатистические потери активной мощности в ЛЭП состаляют 3%, а в трансформаторах – 2%. Примерно 70-75 % всех потерь реактивной мощности составляют потери в трансформаторах. Например, в трехобмоточном трансформаторе мощностью 40 МВ·А напряжением 220 кВ (ТДТН-40000/220)при коэффициенте загрузки, равном 0,8, потери реактивной мощности составляют около 12% от номинальной мощности трансформатора.

Суммарные потери реактивной мощности в системе складываются из потерь в сопротивлениях

и проводимостях

линий электропередач и потерь в трансформаторах:

Потери реактивной мощности в сопротивлениях ЛЭП рассчитываются по формуле


и составляют примерно 5 % от мощности, проходящей по ЛЭП.

Генерация реактивной мощности в проводимостях ЛЭП определяется так:


Среднее значение реактивной мощности, генерируемой в ЛЭП длиной 100 км, составляет:

U ном, кВ

ΔQ с, Мвар

Для воздушных ЛЭП напряжением 110 – 150 кВ потери реактивной в сопротивлениях и генерация в проводимостях приблизительно одинаковы:


В этом случае по ЛЭП передается натуральная мощность.

Потери реактивной мощности в сопротивлениях трансформаторов рассчитывают по формуле:


и составляют приблизительно 10 % от передаваемой мощности.

Генерация реактивной мощности генераторами ЭС

Полная мощность, которая вырабатывается генератором, включает активную и реактивную составляющие:


.

Модуль полной мощности может быть найден через активную мощность и коэффициент мощности генератора:


.

Изменение реактивной мощности происходит при изменении тока возбуждения . В номинальном режиме при номинальном коэффициенте мощности

генератор вырабатывает номинальные значения активнойР ном и реактивнойQ ном мощностей. Генератор может увеличить выработку реактивной мощности сверх номинальной, но при снижении выработки активной мощности по отношению к номинальной. Такое увеличение допускается в пределах, которые ограничиваются номинальными значениями токов статора и ротора.

Условия ограничения по выработке реактивной мощности можно определить их векторной диаграммы. Схема замещения генератора для построения векторной диаграммы представлена на рис. 16.3. В нее генератор входит синхронным индуктивным сопротивлениемx d и ЭДС E q .

Величина комплексной ЭДС равна сумме векторов U г и падения напряжения в сопротивленииx d :

E q = U г +j

.

Построим ВД (рис. 16.4).

По действительной оси откладываем напряжение U г. Получаем точкуа . Под угломφ ном откладываем токI ном. Раскладываем его на активнуюI нома и реактивнуюI номр составляющие. Из точкиа откладываем вектор падения напряжения в сопротивленииx d от реактивной составляющей номинального тока

. Он совпадает по направлению с напряжениемU г. Получаем точкус . Из точкис откладываем вектор падения напряжения в сопротивленииx d от активной составляющей номинального тока

. Этот вектор перпендикулярен напряжениюU г. Получаем точкуb .Вектор

– это вектор полного падения напряжения от номинального тока в сопротивленииx d :

. Соединяем начало координат с точкойb . Вектор

пропорционален ЭДСE q и току возбуждения.

Из начала координат радиусом равным E q проведем дугу. Она определяет допустимые значения тока возбуждения или ЭДСE q по условиям нагрева ротора генератора. Из точкиа радиусом

проведем дугу. Она определяет допустимые параметры генератора по условиям нагрева статора.

Стороны треугольника abc пропорциональны следующим величинам:




.

Рассмотрим работу генератора при угле

, то есть при

(при пониженном косинусе). Построение векторной диаграммы выполняется аналогично. Получим треугольник

Допустимый для генератора режим соответствует значению ЭДСE q1 . В этом случае имеем:


(отрезок ас 1 > ас );

(отрезока b 1 < а b ).

Таким образом, генератор может выдавать реактивную мощность большую чем номинальная

но при снижении активной мощности по отношению к номинальной

Генератор при работе с повышенным косинусом (

и

) вырабатывает активную мощность большую, чем номинальная. При этом реактивная мощность становится меньше номинальной:

P 2 > P ном иQ 2 < Q ном.

Значение ЭДС E q2 ограничивается нагревом статора.

Работа генератора при большей, чем номинальная, активной мощности связана с перегрузкой турбины и не всегда допустима.

Возможность увеличения реактивной мощности за счет уменьшения активной допустимо использовать в случае избытка активной мощности, то есть в режиме минимальной нагрузки. В этом случае часть генераторов может переводится на работу с пониженным коэффициентом мощности.

Резерв реактивной мощности и возможность перегрузок по реактивной мощности важны при аварийном снижении напряжения. Все генераторы имеют устройства АВР, которые при снижении напряжения на зажимах генераторов автоматически увеличивают ток возбуждения и выработку реактивной мощности.

Основные потребители реактивной мощности - асинхронные электродвигатели, которые потребляют 40 % всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8 %; преобразователи 10 %; трансформаторы всех ступеней трансформации 35 %; линии электропередач 7 %.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а косинус фи уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40 .

Малонагруженные трансформаторы также имеют низкий коэффициент мощности (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии , а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Способы снижения потребления реактивной мощности. Компенсация реактивной мощности

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности(конденсаторных установок) .

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

10. Схемы распределительных сетей 6-10кВ: радиальные и магистральные.

Радиальные схемы распределения электроэнергии применяются в тех случаях, когда пункты приема расположены в различных направлениях от центра питания. Они могут быть двух- или одноступенчатыми. На небольших объектах и для питания крупных сосредоточенных потребителей используются одноступенчатые схемы. Двухступенчатые радиальные схемы с промежуточными РП выполняются для крупных и средних объектов с подразделениями, расположенными на большой территории. При наличии потребителей первой и второй категории РП и ТП питаются не менее чем по двум раздельно работающим линиям. Допускается питание электроприемников второй категории по одной линии, состоящей не менее чем из двух кабелей.
При двухтрансформаторных подстанциях каждый трансформатор питается отдельной линией по блочной схеме линия - трансформатор. Пропускная способность блока в послеаварийном режиме рассчитывается исходя из категорийности питаемых потребителей.
При однотрансформаторных подстанциях взаимное резервирование питания небольших групп приемников первой категории осуществляется при помощи кабельных или шинных перемычек на вторичном напряжении между соседними подстанциями.
Вся коммутационная аппаратура устанавливается на РП или ГПП, а на питаемых от них ТП предусматривается преимущественно глухое присоединение трансформаторов. Иногда трансформаторы ТП присоединяются через выключатель нагрузки и разъединитель.

Рис.1 Радиальная схема электроснабжения

Радиальная схема питания обладает большой гибкостью и удобствами в эксплуатации, так как повреждение или ремонт одной линии отражается на работе только одного потребителя.

Магистральные схемы напряжением 6... 10 кВ применяются при линейном («упорядоченном») размещении подстанций на территории объекта, когда линии от центра питания до пунктов приема могут быть проложены без значительных обратных направлений. Магистральные схемы имеют следующие преимущества: лучшую загрузку кабелей при нормальном режиме, меньшее число камер на РП. К недостаткам магистральных схем следует отнести усложнение схем коммутации при присоединении ТП и одновременное отключение нескольких потребителей, питающихся от магистрали, при ее повреждении.
Число трансформаторов, присоединяемых к одной магистрали, обычно не превышает двух-трех при мощности трансформаторов 1000...2500 кВ-А и четырех-пяти при мощности 250...630 кВ-А.
Магистральные схемы выполняются одиночными и двойными, с односторонним и двухсторонним питанием.

Одиночные магистрали без резервирования (рис. 2, а) применяются в тех случаях, когда отключение одного потребителя вызывает необходимость по условиям технологии производства отключения всех остальных потребителей (например, непрерывные технологические линии). При кабельных магистралях их трасса должна быть доступна для ремонта в любое время года, что возможно при прокладке в каналах, туннелях и т. п. Надежность схемы с одиночными магистралями можно повысить, если питаемые ими однотрансформаторные подстанции расположить таким образом, чтобы была возможность осуществить частичное резервирование по связям низкого напряжения между ближайшими подстанциями. На рис. 3 показана схема, на которой близко расположенные трансформаторные подстанции питаются от разных одиночных магистралей с резервированием по связям на низком напряжении. Такие магистральные схемы можно применять и для потребителей первой категории, если их мощность не превышает 15...20% от общей нагрузки трансформаторов. Трансформаторы подключаются к разным магистралям, присоединенным к разным секциям РП или РУ.

Рис.2 Магистральные схемы с односторонним питанием: а - одиночные; б - двойные с резервированием на НН

Схемы с двойными («сквозными») магистралями (см. рис. 2, б) применяются для питания ответственных и технологически слабо связанных между собой потребителей одного объекта. Установка разъединителей на входе и выходе линии магистрали не требуется.

11. Выбор числа мощности трансформаторов цеховых подстанций.

Выбор числа и мощности трансформаторной ЦТП обусловлен величиной и характером электрической нагрузки. При выборе числа и мощности трансформаторов следует добиваться экономически целесообразного режима их работы, обеспечения резервирования питания электроприемников при отключении одного из трансформаторов, стремиться к однотипности трансформаторов; кроме того должен решаться вопрос об экономически целесообразной величине реактивной нагрузки, передаваемой в сеть напряжения до 1 кВ.

Количество цеховых ТП влияет на затраты распределительных устройств 6-20 кВ, внутризаводские и цеховые электрические сети.

Однотрансформаторные подстанции применяются при наличии централизованного сервера и при взаимном резервировании трансформатора по линиям низшего напряжения соседних ТП для потребителей 2 категории, при наличии в сети 380-660 В небольшого количества (20%) потребителей 1 категории при соответствующем построении схемы, а также для потребителей 3 категории при наличии централизованного резерва.

При преобладании потребителей 1 категории;

Для сосредоточенной цеховой нагрузки и отдельно стоящих объектов общезаводского назначения (насосные и компрессорные станции);

Для цехов с высокой удельной плотностью нагрузки (выше 0,5 - 0,7 кВА/м).

Цеховые ТП с числом трансформатора более 2 экономически нецелесообразны и применяются в виде исключения при надлежащем обосновании: если имеются мощные электроприемники, сосредоточенные в одном месте, если нельзя рассредоточить подстанции по условиям технологии или окружающей среды.

Выбор числа и мощности трансформаторов цеховых ТП производится на основании следующих исходных данных:

· расчетная нагрузка ЦТП за наиболее загруженную смену, кВА.

· экономическая плотность электрической нагрузки кВА/кв.м;

· величина реактивной нагрузки, кВАр;

· коэффициент загрузки в нормальном режиме Кз;

· коэффициент нагрузки в аварийном режиме Кав;

· допустимое число типогабаритов трансформаторов.

Следует иметь в виду, что при нагрузки в цехе меньшей 400 кВА целесообразно решить вопрос о ее объединении с нагрузкой рядом расположенного цеха, в остальных случаях (Рр > 400 кВт) в цехе рационально устанавливать собственное ТП.

12. Основное электрооборудование главных понизительных подстанций: силовые включатели разъединители отделители и короткозамыкатели, трансформаторы тока и напряжения.

Силовые выключатели:

1. ВАКУУМНЫЕ ВЫКЛЮЧАТЕЛИ

Вакуумные выключатели типа ВБТЭ и ВБТП предназначены для использования в экскаваторах, передвижных электростанциях на автомобильном ходу, буровых установках, роторных комплексах, насосных станциях и других электроустановках. Они выполнены в виде выдвижного элемента шкафа КРУ, содержат выпрямительный мост для питания отключающего электромагнита, включающий контактор, цепи заряда конденсатора отключения, блокировку от многократных повторных включений и элементы блокировок от ошибочных операций с выкатным элементом. Выключатели имеют фиксированный расцепитель, который обеспечивает возможность отключения выключателя только из полностью включенного положения в отличие от свободного расцепителя у выключателей типа ВБЭ (свободный расцепитель обеспечивает возвращение главных контактов выключателя в отключенное положение и фиксацию их в этом положении в случае, даже если при этом удерживается команда на включение). Достоинством выключателей типа ВБТЭ и ВБТП является верхняя компоновка встроенного электромагнитного привода, которая обеспечивает удобство технического обслуживания в эксплуатации. Выключатель предназначен для работы в шкафах комплектных распределительных устройств (КРУ), шкафах КСО, а также замены маломасляных выключателей в распределительных устройствах напряжением 6-10 кВ

2. ЭЛЕГАЗОВЫЕ ВЫКЛЮЧАТЕЛИ

Современные разработки конструкций выключателей с элегазовыми дугогасителями в настоящее время ведутся в различных направлениях, и прежде всего в тех, которые дают наиболее эффективное технико-экономическое использование специфических свойств этой дугогасящей и изоляционной среды. Такими направлениями являются следующие.

1. Модульные серии выключателей на высокие классы напряжения (100 кВ и выше), предназначенные для отключения предельно больших токов КЗ при наиболее неблагоприятных условиях КЗ.

2. Выключатели на номинальное напряжение 10-35 кВ в компактном исполнении для электрифицированного подвижного состава и других электрических установок специального назначения.

3. Выключатели нагрузки на номинальные напряжения 15-100 кВ и выше, предназначенные для отключения индуктивных токов ненагруженных трансформаторов и ёмкостных токов.

В настоящее время опытные и промышленные образцы и серии элегазовых выключателей переменного тока высокого напряжения производятся различными фирмами во всём мире

Физико-химические свойства элегаза. Шестифтористая сера SF 6 - элегаз, относится к «электроотрицательным» газам, получившим такое название из-за способности их молекул захватывать свободные электроны, превращаясь в тяжелые и малоподвижные отрицательно заряженные ионы. Элегаз при нормальной температуре (20°С) и давлении 0,1 МПа представляет собой газ без цвета и запаха. Плотность его почти в 5 раз выше плотности воздуха, скорость звука в нем при температуре 30°С - 138,5 м/с (330 м/с в воздухе). Элегаз обладает низкой теплоемкостью в канале столба дуги и повышенной теплопроводностью горячих газов, окружающих столб дуги (2000 К). Это характеризует элегаз как среду, обладающую высокими теплопроводящими свойствами. К недостаткам элегаза следует отнести его низкую температуру сжижения (-64°С) при давлении 0,1 МПа, которая с повышением давления повышается. Чистый элегаз негорюч, инертен, нагревостоек до 800°С. Под влиянием электрической дуги или коронного разряда происходит разложение элегаза с образованием химически активных соединений, которые могут вызвать разрушение изоляционных и конструкционных материалов. Однако степень разложения элегаза под воздействием электрической дуги в дугогасительной камере низка из-за того, что большое количество разложившегося газа немедленно восстанавливается в элегазе. Газообразными продуктами разложения являются низшие фториды сред SF 2 , SF 4 . Хотя эти газы сами по себе не токсичны, но легко гидролизуются при взаимодействии с влагой, образуя фтористо-водородную кислоту и двуокись серы. Для их поглощения в элегазовые выключатели включаются фильтры, сорберы из активированного алюминия Аl 2 О 3 , которые поглощают как газообразные продукты разложения, так и влагу. Кроме активных газов во время горения дуги в результате реакции с парами материалов контактов дугогасителя образуются металлические фториды в виде тонкого слоя порошка. Обладая низкой электропроводностью, они не снижают электрическую прочность изоляции аппарата.

3. ВОЗДУШНЫЕ ВЫКЛЮЧАТЕЛИ

По назначению воздушные выключатели разделяются на следующие группы:

  • сетевые выключатели на напряжение 6 кВ и выше, применяемые в электрических сетях и предназначенные для пропуска и коммутации тока в нормальных условиях работы цепи и в условиях КЗ;
  • генераторные выключатели на напряжение 6-24 кВ, применяемые для подключения генераторов и предназначенные для пропуска и коммутации токов в нормальных условиях, а также в пусковых режимах и при КЗ;
  • выключатели для электротермических установок с напряжениями 6-220 кВ, предназначенные для работы как в нормальных, так и в аварийных режимах;
  • выключатели специального назначения.

По виду установки воздушные выключатели можно разделить на следующие группы:

  • опорные;
  • подвесные (подвешиваются к портальным конструкциям на ОРУ);
  • выкатные (имеют приспособления для выкатки из РУ);
  • встраиваемые в комплектные распределительные устройства.

К достоинствам воздушных выключателей можно отнести следующие показатели: высокую отключающую способность; пожаробезопасность; высокое быстродействие; способность коммутации токов КЗ с большим процентом апериодической составляющей (вплоть до коммутации цепей постоянного тока).

Недостатками воздушных выключателей являются наличие дорогостоящего постоянно действующего компрессорного оборудования; высокая чувствительность к скорости восстанавливающегося напряжения при неудаленном КЗ; возможность «среза» тока при отключении малых индуктивных токов (отключение ненагруженных силовых трансформаторов).

Принцип действия дугогаситсльпых устройств (ДУ) воздушных выключателей. Сжатый воздух является эффективной средой, обеспечивающей надежное гашение электрической дуги. Это достигается интенсивным воздействием с максимально возможными скоростями потока воздуха на дуговой канал. В ДУ воздушных выключателей гашение электрической дуги происходит в дутьевых каналах (соплах), которые конструктивно в совокупности с оконечной частью контактов дугогасителя образуют дутьевую систему. Столб дуги, образовавшейся на размыкающихся контактах, под действием воздушного потока растягивается и быстро перемещается в сопла, где происходит ее гашение.

4. МАСЛЯННЫЕ ВЫКЛЮЧАТЕЛИ

Принцип действия дугогаситсльных устройств. В дугогасительных устройствах традиционных масляных выключателей гашение дуги осуществляется путем эффективного ее охлаждения в потоке газопаровой смеси, вырабатываемой дугой в результате разложения и испарения масла. В зависимости от назначения масла можно выделить две основные группы масляных выключателей:

  • баковые (многообъемные) масляные выключатели, в которых масло используется для гашения и изоляции токоведущих частей от заземленного бака;
  • маломасляные (малообъемные) масляные выключатели, в которых масло используется только для гашения дуги и изоляции между разомкнутыми контактами одного полюса.

В состав газопаровой смеси, возникающей в результате разложения масла под действием дуги, входит до 70 % водорода Н 2 , обладающего по сравнению с воздухом в 8 раз более высокой теплопроводностью, но меньшей предельной электрической прочностью. Поток газопаровой смеси в зоне горения дуги обладает высокой температурой 800-2500 К. Механизм охлаждения столба дуги при больших (обычно выше 100 А) и малых значениях тока дуги различен. При больших токах охлаждение дуги происходит главным образом за счет принудительной конвекции в потоке газопаровой смеси при большом давлении. С увеличением тока интенсивность конвективного охлаждения и давление в зоне гашения дуги увеличиваются. При небольших токах конвекция и давление газа в зоне гашения дуги снижаются, условия охлаждения дуги ухудшаются и время гашения дуги затягивается. Повышение давления в зоне гашения дуги в результате принудительной подачи масла может существенно улучшить условия гашения дуги при отключении небольших токов.

  • интенсивное дутье газопаровой смеси в зоне дуги, особенно в момент тока, близкого к нулю;
  • максимально возможное высокое давление газопаровой смеси в области дуги в конце полупериода тока.

5. ЭЛЕКТРОМАГНИТНЫЕ ВЫКЛЮЧАТЕЛИ

Несмотря на ограниченную область использования по напряжению (6-20 кВ) выключатели этого типа нашли широкое применение в КРУ, особенно в системах внутренних нужд на ТЭЦ и АЭС. Номинальные токи выключателей достигают 3150 А, а номинальные токи отключения - 40 кА. При этом в отличие от масляных или воздушных выключателей эксплуатационные расходы на них относительно невелики.

Принцип действия электромагнитного выключателя заключается в том, что при воздействии магнитного поля на дугу она удлиняется и направляется в дугогасительную камеру (рис. 5.11) узкощелевого типа, где, тесно взаимодействуя со стенками камеры (диаметр дуги значительно превосходит ширину щели d д > щ), она охлаждается.

Условия гашения дуги в узкощелевом дугогасителе оказываются значительно более легкими, чем в других типах выключателей.

Разъединители, отделители, короткозамыкатели
Как отмечалось выше, разъединители служат лишь для коммутации обесточенных цепей в целях проведения ремонта или ревизии АВН, а также для выполнения переключений РУ на резервное питание. При проведении ревизии или ремонта того или иного электротехнического оборудования на высоком напряжении необходимо после отключения тока в данной цепи произвести отключение данного объекта с обеих сторон с созданием видимого разрыва цепи. Кроме того, объект с обеих сторон заземляется либо переносными заземлителями, либо заземлитель предусмотрен в конструкции разъединителя и сблокирован с механизмом привода ножа разъединителя. Исходя из задачи обеспечения безопасности обслуживающего персонала при проведении работ на линии, а также осуществления бесперебойного электроснабжения потребителей, разъединитель должен отвечать следующим требованиям:

  • обеспечивать видимый разрыв тока в цепи при отключении;
  • быть термически и электродинамически устойчив;
  • иметь требуемый уровень изоляции при любых атмосферных условиях;
  • иметь простую и надежную конструкцию с учетом самых тяжелых условий работы (обледенение, ветровые нагрузки).

Поэтому разъединитель имеет таким образом организованную изоляцию, что при появлении недопустимо большого напряжения на полюсе отключенного разъединителя пробой должен произойти между полюсом и землей по его опорной изоляции, а не между разведенными ножами.

Разъединители наружной установки, как правило, имеют заземлители и могут снабжаться дугогасительными рогами для гашения емкостных токов и приспособлениями, разрушающими корку льда.

Отделители и короткозамыкатели устанавливаются на стороне высшего напряжения в менее ответственных РУ в целях экономии капитальных затрат и места. Выключатели при этом предусматриваются только на стороне низшего напряжения. При перегрузках силового трансформатора, повреждении его внутренней изоляции, повышенном газовыделении внутри бака происходит срабатывание реле газоанализатора среды либо реле дифференциальной защиты. Срабатывание этих реле дает команду на автоматическое срабатывание короткозамыкателя, провоцирующего действительное КЗ на стороне высшего напряжения. В цепи протекания тока КЗ короткозамыкателя установлены трансформаторы тока, которые дают команду о чрезмерном токе в систему релейной защиты, в свою очередь включающей систему управления выключателем на отключение выключателя. После отключения искусственно созданного КЗ линейным выключателем, часто находящимся на значительном удалении от данного РУ, исчезновение тока КЗ дает команду на отключение отделителя данного РУ. После чего в соответствии с режимом АПВ питание линии вновь возобновляется, т.е. обеспечивается отключение трансформатора в аварийном состоянии без использования выключателя на стороне высшего напряжения. Отключение короткозамыкателя осуществляется приводом, включение - с помощью взведенных пружин. Отделитель отключается автоматически, включается вручную для исключения возможности ошибочного автоматического включения при неотключенном короткозамыкателе.

Измерительные трансформаторы тока и напряжения предназначены для уменьшения первичных токов и напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.

13. Схемы ГПП предприятий: схемы без выключателей на стороне ВН, схемы мостика, блочные схемы.

Большинство подстанций промышленных предприятий выполняется без сборных шин на стороне высшего напряжения по блочному принципу, реализуемому в виде схем “линия - трансформатор”. Блочные схемы просты и экономичны. Установка на подстанциях, как правило двух трансформаторов обеспечивает по надежности электроснабжение потребителей I категории. Схемы со сборными шинами применяются в редких случаях и должны иметь технико-экономическое обоснование.

Схемы с перемычками(мостиками) между питающими линиями следует применять лишь при обоснованной необходимости устройства перемычек. В загрязненных зонах их следует избегать, так как наличие дополнительных элементов увеличивает вероятность аварий на подстанции.

Схема двухтрансформаторной подстанции 110-220 кВ без выключателей на ВН.

Данная схема подстанции применяется при тупиковом питании потребителей электрической энергии непосредственно с шин высокого напряжения электростанций или районной подстанции, либо от двух параллельных линий 110-220 кВ проходящих в зоне сооружения подстанции. Присоединение подстанций к питающим линиям в этом случае производится глухими ответвлениями (т. е. без выключателей в месте присоединения), а подстанции носят название ответвительных. Распространенной также является схема с присоединением одного из трансформаторов глухим ответвлением к ближайшей одиночной линии высоковольтной сети системы, а второго - к тупиковой линии передачи, прокладываемой на подстанцию непосредственно от источника электроснабжения. Питание подстанций, сооружаемых по схеме рис. 12-2, от двух различных источников электроснабжения не допускается.

При любой схеме питания трансформаторы подстанций присоединяются к сети через линейный разъединитель 1 и отделитель 2 .Для защиты трансформатора установлен однофазный короткозамыкатель 3. При повреждении трансформатора вступает в действие релейная защита, автоматически включающая короткозамыкатель, чем создается однофазное короткое замыкание на линии. Линия отключается со стороны источника питания на время, достаточное для автоматического отключения отделителем поврежденного трансформатора. Вслед за этим АПВ (однократное или двукратное) снова включает питающую линию, обеспечивая электроснабжение остальных присоединенных к ней потребителей. Разъединители 1 и 5 обеспечивают ремонт и испытание коммутационной аппаратуры при работе одного из трансформаторов.

14. Виды коротких замыканий. Параметры цепи короткого замыкания.

В трёхфазных электрических сетях различают следующие виды коротких замыканий

  • Однофазное (замыкание фазы на землю в сетях с заземленной нейтралью трансформатора)
  • Двухфазное (замыкание двух фаз между собой)
  • Двухфазное на землю (2 фазы между собой и одновременно на землю)
  • Трёхфазное (3 фазы между собой)

В электрических машинах возможны короткие замыкания:

  • Межвитковые - замыкание между собой витков обмоток ротора или статора во вращающихся машинах, а также замыкание между собой витков обмоток трансформаторов;
  • Замыкание обмотки на металлический корпус.

При коротком замыкании резко возрастает сила тока протекающего в цепи, что обычно приводит к механическому или термическому повреждению устройства. В месте короткого замыкания может возникнуть электрическая дуга. Все это нередко становится причиной пожаров.

Короткое замыкание в одном из элементов энергетической системы способно нарушить её функционирование в целом - у других потребителей может снизиться питающее напряжение, при коротких замыканиях в трёхфазных сетях возникает асимметрия напряжений, нарушающая нормальное электроснабжение. В больших энергосетях короткое замыкание может вызывать тяжёлые системные аварии.

В случае повреждения проводов воздушных линий электропередачи и замыкании их на землю, в окружающем пространстве может возникнуть сильное электромагнитное поле, способное навести в близко расположенном оборудовании ЭДС, опасную для аппаратуры и работающих с ней людей.

Рядом с местом аварии происходит растекание потенциала по поверхности земли, шаговое напряжение может достигнуть опасного для человека значения.

15.Расчет токов короткого замыкания в относительных единицах.

При расчетах в относительных единицах все величины сравнивают с базисными, в качестве которых принимают базисную мощность Sб и базисное напряжение Uб. За базисную мощность принимают мощность одного трансформатора ГПП или условную единицу мощности , например, 100 или 1000 МВА.

В качестве базисного напряжения принимают среднее напряжение той ступени, на которой имеет место КЗ (Uср=0,133; 0,23; 0,4; 0,525; 0,69; 3,15; 6,3; 10,5; 13,8; 15,75; 18; 24; 37; 115; 154; 230; 340; 515 кВ).

16. Выбор оборудования и токоведущих частей. Ограничение токов короткого замыкания.

Электрические аппараты и токоведущие части любой электроустановки должны быть выбраны так, чтобы могли надежно работать как в нормальном режиме работы, так и при отклонении от него.

Выбор электрических аппаратов и токоведущих частей электроустановок производят по условиям работы в нормальном режиме и проверяют на термическую и динамическую устойчивость при коротком замыкании. Выбранные электрические аппараты и токоведущие части по условию длительного нагрева должны удовлетворять форсированному режиму работы электроустановки.

, (1.3)

где - номинальная мощность трансформатора, МВА,

- номинальное напряжение соответствующей обмотки трансформатора, кВ.

Ток форсированного режима определяется при условии отключения параллельно работающего трансформатора, когда оставшийся в работе трансформатор может быть перегружен по правилам аварийных длительных или систематических перегрузок, т.е.

, (1.4)

где - коэффициент аварийной допустимой или систематической перегрузки трансформатора.

в) Цепь трехобмоточного трансформатора или автотрансформатора.

Загрузка обмоток высшего, среднего и низкого напряжений трансформаторов электростанции зависит от графиков нагрузки, на низком и среднем напряжении, и схемы соединения электростанции на низком напряжении. При блочном соединении генератора с трансформатором на стороне низкого напряжения ток нормального и форсированного режимов определяется по выражениям (1.1) и (1.2).

При поперечных связях между генераторами ток нормального и форсированного режимов на стороне высшего и низшего напряжений определяется по номинальной мощности трансформатора с учетом его перегрузки по выражениям (1.3) и (1.4). На стороне среднего напряжения, если отсутствует связь с энергосистемой, ток нормального и форсированного режимов определяется по выражениям:

, (1.5)

где - мощность нагрузки на стороне среднего напряжения, МВА.

. (1.6)

Если к шинам среднего напряжения присоединена энергосистема и возможны перетоки мощности между высшим и средним напряжениями, то ток нормального и форсированного режимов определяется по выражениям (1.3) и (1.4) .

Ток нормального и форсированного режимов обмоток трехобмоточного трансформатора или автотрансформатора подстанции определяются с учетом фактической максимальной нагрузки каждой обмотки.

г) Цепь линии.

Если линия одиночная, то определяется по максимальной нагрузке линии.

Для двух параллельно работающих линий ток нормального и форсированного режимов определяется по выражениям:

, (1.7)

где - наибольшая мощность потребителей, присоединенных к линиям.

. (1.8)

Для параллельных линий ток нормального и форсированного режимов определяется по выражениям:

, (1.9)

. (1.10)

д) Цепь секционных, шиносоединительных выключателей, сборные шины.

Ток нормального режима определяется с учетом токораспределения по шинам при наиболее неблагоприятном эксплуатационном режиме . Обычно ток, проходящий по сборным шинам, секционному и шиносоединительному выключателям, не превышает максимального тока самого мощного генератора или трансформатора, присоединенного к этим шинам.

Ограничение токов КЗ



Загрузка...