electricschool.ru

Железная дорога на магнитной подушке. Электромагнитные транспортные средства и аппараты. Транспорт на магнитной подушке. – магнитное поле локализовано ниже вагона

Сухов Виталий Владимирович, Галин Алексей Леонидович

Мы представляем вам проект, основной темой которого является «Электромагнитные транспортные средства и аппараты». Занявшись этой работой, мы поняли, что наиболее интересным вопросом для нас является транспорт на магнитной подушке.

Недавно знаменитый английский писатель-фантаст Артур Кларк сделал очередное предсказание. «...Мы, возможно, стоим на пороге создания космического аппарата нового типа, который сможет покидать Землю с минимальными затратами за счет преодоления гравитационного барьера, - считает он. - Тогда нынешние ракеты станут тем же, чем были воздушные шары до первой мировой войны». На чем же основано такое суждение? Ответ нужно искать в современных идеях создания транспорта на магнитной подушке.

Скачать:

Предварительный просмотр:

I-ая открытая студенческая научно-практическая конференция

«Моя проектная деятельность в колледже»

Направление научно-практического проекта:

Электротехника

Тема проекта:

Электромагнитные транспортные средства и аппараты. Транспорт на магнитной подушке

Проект подготовлен:

Сухов Виталий Владимирович, студент группы 2 ЭТ

Галин Алексей Леонидович, студент группы 2 ЭТ

Название учебного заведения:

ГБОУ СПО Электромеханический колледж №55

Руководитель проекта:

Утенкова Еатерина Сергеевна

Москва 2012

Введение

Магнитоплан или Маглев

Установка Хальбаха

Заключение

Список литературы

Введение

Мы представляем вам проект, основной темой которого является «Электромагнитные транспортные средства и аппараты». Занявшись этой работой, мы поняли, что наиболее интересным вопросом для нас является транспорт на магнитной подушке.

Недавно знаменитый английский писатель-фантаст Артур Кларк сделал очередное предсказание. «...Мы, возможно, стоим на пороге создания космического аппарата нового типа, который сможет покидать Землю с минимальными затратами за счет преодоления гравитационного барьера, - считает он. - Тогда нынешние ракеты станут тем же, чем были воздушные шары до первой мировой войны». На чем же основано такое суждение? Ответ нужно искать в современных идеях создания транспорта на магнитной подушке.

Магнитоплан или Маглев

Магнитоплан или Маглев (от англ. magnetic levitation) - это поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления.

Скорость, достижимая маглев, сравнима со скоростью самолета и позволяет составить конкуренцию воздушным сообщениям на малых (для авиации) расстояниях (до 1000 км). Хотя сама идея такого транспорта не нова, экономические и технические ограничения не позволили ей развернуться в полной мере: для публичного использования технология воплощалась всего несколько раз. В настоящее время, Маглев не может использовать существующую транспортную инфраструктуру, хотя есть проекты с расположением элементов магнитной дороги между рельсов обычной железной дороги или под полотном автотрассы.

Необходимость поездов на магнитной подушке (MAGLEV) обсуждается уже долгие годы, однако результаты попыток их реального применения оказались обескураживающими. Важнейший недостаток поездов MAGLEV заключается в особенности работы электромагнитов, которые и обеспечивают левитацию вагонов над полотном. Электромагниты, не охлаждаемые до состояния сверхпроводимости, потребляют гигантские объемы энергии. При использовании же сверхпроводников в полотне стоимость их охлаждения сведет на нет все экономические преимущества и возможность осуществления проекта.

Альтернатива предложена физиком Ричардом Постом из Lawrence Livermore National Laboratory, Калифорния. Ее суть заключается в использовании не электромагнитов, а постоянных магнитов. Ранее применяемые постоянные магниты были слишком слабы, что бы поднять поезд, и Пост применяет метод частичной акселерации, разработанный отставным физиком Клаусом Хальбахом из Lawrence Berkley National Laboratory. Хальбах предложил метод расположения постоянных магнитов таким образом, что бы сконцентрировать их суммарные поля в одном направлении. Inductrack – так Пост назвал эту систему – использует установки Хальбаха, вмонтированные в днище вагона. Полотно, само по себе, - это упорядоченная укладка витков изолированного медного кабеля.

Установка Хальбаха

Установка Хальбаха концентрирует магнитное поле в определенной точке, снижая ее в других. Будучи вмонтированной в днище вагона, она генерирует магнитное поле, которое индуцирует достаточные токи в обмотках полотна под движущимся вагоном, чтобы поднять вагон на несколько сантиметров и стабилизировать его [рис.1]. Когда поезд останавливается, эффект левитации исчезает, вагоны опускаются на дополнительные шасси.

Рис. 1 Установка Хальбаха

На рисунке представлено 20 метровое опытное полотно для испытания MAGLEV поездов типа Inductrack, которое содержит около 1000 прямоугольных индуктивных обмоток, каждая шириной 15 см. На переднем плане испытательная тележка и электрический контур. Алюминиевые рельсы вдоль полотна поддерживают тележку до момента достижения устойчивой левитации. Установки Хальбаха обеспечивают: под днищем – левитацию, по бокам – устойчивость.

Когда поезд достигает скорости 1-2 км/ч, магниты производят достаточные для левитации поезда токи в индуктивных обмотках. Сила, движущая поезд, генерируется электромагнитами, установленными с интервалами вдоль пути. Поля электромагнитов пульсируют таким образом, что отталкивают от себя установки Хальбаха, смонтированные в поезде, и двигают его вперед. Согласно Посту, при правильном расположении установок Хальбаха, вагоны не потеряют равновесия ни при каких обстоятельствах, вплоть до землетрясения. В настоящее время, исходя из успехов демонстрационной работы Поста в масштабе 1/20, NASA подписало 3-х годичный контракт с его коллективом в Ливерморе для дальнейшего исследования данной концепции для более эффективного запуска спутников на орбиту. Предполагается, что эта система будет использоваться в качестве многоразового разгонного носителя, который разгонял бы ракету до скорости около 1 Маха, перед включением на ней основных двигателей.

Однако, несмотря на все сложности перспективы использования транспорта на магнитной подушке остаются весьма заманчивыми. Так, японское правительство готовится возобновить работу над принципиально новым видом наземного транспорта - поездами на магнитной подушке. По заверениям инженеров, вагоны «маглева» способны покрывать расстояние между двумя крупнейшими населенными центрами Японии - Токио и Осакой - всего за 1 час. Нынешним скоростным железнодорожным экспрессам для этого требуется времени в 2,5 раза больше.

Секрет скорости «маглева» состоит в том, что вагоны, подвешенные в воздух силой электромагнитного отталкивания, двигаются не по колее, а над ней. Это напрочь исключает потери, неизбежные при трении колес о рельсы. Многолетние испытания, проводившиеся в префектуре Яманаси на пробном участке длиной 18,4 км, подтвердили надежность и безопасность этой транспортной системы. Вагоны, двигавшиеся в автоматическом режиме, без пассажирской нагрузки развивали скорость в 550 км/час. Пока что рекорд скоростного передвижения по рельсам принадлежит французам, чей поезд TGV в 1990 году на испытаниях разогнался до 515 км/час.

Вопросы эксплуатации транспорта на магнитной подушке

Японцев также тревожат экономические проблемы, и в первую очередь вопрос рентабельности сверхскоростной линии «маглева». Ныне ежегодно между Токио и Осакой совершают путешествие около 24 млн. человек, 70% пассажиров пользуются при этом скоростной железнодорожной линией. По подсчетам футурологов, революционное развитие сети компьютерной связи неминуемо приведет к снижению пассажиропотока между двумя крупнейшими центрами страны. На загруженности транспортных линий может сказаться и наметившееся падение численности активного населения страны

Российский проект открытия движения поездов на магнитной подушке из Москвы в Санкт-Петербург в ближайшее время не будет реализован, сообщил на пресс-конференции в Москве в конце февраля 2011 года руководитель Федерального агентства железнодорожного транспорта Михаил Акулов. С этим проектом могут быть проблемы, поскольку нет опыта эксплуатации поездов на магнитной подушке в условиях зимы, сказал Акулов, сообщив, что такой проект предложен группой российских разработчиков, которые взяли на вооружение опыт Китая. Вместе с тем Акулов отметил, что идея создания высокоскоростной магистрали Москва – Санкт-Петербург сегодня вновь актуальна. В частности, предложено совместить создание высокоскоростной магистрали с параллельным строительством автомобильного шоссе. Глава агентства добавил, что мощные бизнес-структуры из Азии готовы участвовать в этом проекте, не уточнив, о каких именно структурах идет речь.

Технологии магнитного подвеса поездов

На данный момент существует 3 основных технологии магнитного подвеса поездов:

1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS).

Сверхпроводящий магнит - соленоид или электромагнит с обмоткой из сверхпроводящего материала. Обмотка в состоянии сверхпроводимости обладает нулевым омическим сопротивлением. Если такая обмотка замкнута накоротко, то наведённый в ней электрический ток сохраняется практически сколь угодно долго.

Магнитное поле незатухающего тока, циркулирующего по обмотке сверхпроводящего магнита, исключительно стабильно и лишено пульсаций, что важно для ряда приложений в научных исследованиях и технике. Обмотка сверхпроводящего магнита теряет свойство сверхпроводимости при повышении температуры выше критической температуры Тк сверхпроводника, при достижении в обмотке критического тока Iк или критического магнитного поля Нк. Учитывая это, для обмоток сверхпроводящих магнитов. применяют материалы с высокими значениями Тк, Iк и Нк.

2. На электромагнитах (электромагнитная подвеска, EMS).

3. На постоянных магнитах; это новая и потенциально самая экономичная система.

Состав левитирует за счёт отталкивания одинаковых полюсов магнитов и, наоборот, притягивания разных полюсов. Движение осуществляется линейным двигателем.

Линейный двигатель -электродвигатель, у которого один из элементов магнитной системы разомкнут и имеет развёрнутую обмотку, создающую бегущее магнитное поле, а другой выполнен в виде направляющей, обеспечивающей линейное перемещение подвижной части двигателя.

Сейчас разработано множество проектов линейных двигателей, но всех их можно разделить на две категории - двигатели низкого ускорения и двигатели высокого ускорения.

Двигатели низкого ускорения используются в общественном транспорте (маглев, монорельс, метрополитен). Двигатели высокого ускорения весьма небольшие по длине, и обычно применяются, чтобы разогнать объект до высокой скорости, а затем выпустить его. Они часто используются для исследований гиперскоростных столкновений, как оружие или пусковые установки космических кораблей. Линейные двигатели широко используются также в приводах подачи металлорежущих станков,и в робототехнике. расположенным либо на поезде, либо на пути, либо и там, и там. Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава.

По теореме Ирншоу (S. Earnshaw, иногда пишут Эрншоу), статичные поля, создаваемые одними только электромагнитами и постоянными магнитами, нестабильны, в отличие от полей диамагнетиков.

Диамагнетики - вещества, намагничивающиеся навстречу направлению действующего на них внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики не имеют магнитного момента. и сверхпроводящих магнитов. Существуют системы стабилизации: датчики постоянно замеряют расстояние от поезда до пути и соответственно ему меняется напряжение на электромагнитах.

Рассмотреть принцип движения транспорта на магнитной подушке можно на следующей схеме.

Здесь показан принцип движения транспорта вперед, под действием изменения магнитных полей. Расположение магнитов дают возможность вагону, будто тянутся вперед, к противоположному полюсу, тем самым двигаясь всей конструкцией.

Наиболее подробно саамам магнитная установка представлена на схеме конструкции магнитного подвеса и электропривода экипажа на базе линейных асинхронных машин

Рис. 1. Конструкция магнитного подвеса и электропривода экипажа на базе линейных асинхронных машин:
1 - индуктор магнитного подвеса; 2 - вторичный элемент; 3 - крышка; 4,5 - зубцы и обмотка индуктора подвеса; 6,7 - токопроводящая клетка и магнитопровод вторичного элемента; 8 - основание; 9-платформа; 10 - кузов экипажа;11, 12 - пружины; 13 -демпфер; 14 - штанга; 15 - цилиндрический шарнир; 16 - опора скольжения; 17 - кронштейн;18 - упор;19 - штанга. Von - скорость магнитного поля: Fn - подъёмная сила подвеса: Вб - индукция рабочего зазора подвеса

Рис.2. Конструкция тягового линейного асинхронного двигателя:
1 - индуктор тягового привода; 2 - вторичный элемент; 3 - магнитопровод индуктора привода; 4 - нажимные плиты индуктора привода; 5 - зубцы индуктора привода; 6 - катушки обмотки индуктора привода; 7 - основание.

Достоинства и недостатки транспорта на магнитной подушке

Достоинства

  • Теоретически самая высокая скорость из тех, которые можно получить на серийном (не спортивном) наземном транспорте.
  • Низкий шум.

Недостатки

  • Высокая стоимость создания и обслуживания колеи.
  • Вес магнитов, потребление электроэнергии.
  • Создаваемое магнитной подвеской электромагнитное поле может оказаться вредным для поездных бригад и/или окрестных жителей. Даже тяговые трансформаторы, применяемые на электрифицированных переменным током железных дорогах, вредны для машинистов, но в данном случае напряжённость поля получается на порядок больше. Также, возможно, линии маглева будут недоступны для людей, использующих кардиостимуляторы.
  • Потребуется на высокой скорости (сотни км/ч) контролировать зазор между дорогой и поездом (несколько сантиметров). Для этого нужны сверхбыстродействующие системы управления.
  • Требуется сложная путевая инфраструктура.

Например, стрелка для маглева представляет собой два участка дороги, которые сменяют друг друга в зависимости от направления поворота. Поэтому маловероятно, что линии маглева будут образовывать мало-мальски разветвлённые сети с развилками и пересечениями.

Разработки новых видов транспорта

Работы по созданию скоростных бесколесных поездов на магнитной подушке ведутся достаточно давно, в частности в Советском Союзе с 1974 года. Однако до сих пор проблема наиболее перспективного транспорта будущего остается открытой и является широким полем деятельности для.

Рис. 2 Модель поезда на магнитной подушке

На рисунке 2 представлена модель поезда на магнитной подушке, где разработчики решили перевернуть всю механическую систему с ног на голову. Железнодорожная трасса представляет собой совокупность расставленных через определенные равные расстояния железобетонных опор со специальными проемами (окнами) для поездов. Рельсов нет. Почему? Дело в том, что модель перевернута, и в качестве рельса служит сам поезд, а в окнах опор установлены колеса с электромоторами, скоростью вращения которых дистанционно управляет машинист поезда. Таким образом, поезд как бы летит по воздуху. Расстояния между опорами подобраны таким образом, чтобы в каждый момент своего движения поезд находился, как минимум, в двух-трех из них, а один вагон имеет длину большую, чем один пролет. Это позволяет не только удерживать железнодорожный состав на весу, но и, вместе с тем, при отказе одного из колес в какой-либо опоре движение будет продолжаться.

Преимуществ использования именно этой модели достаточно. Во-первых, это экономия на материалах, во-вторых, вес поезда значительно уменьшается (не нужно ни двигателей, ни колес), в-третьих, такая модель чрезвычайно экологична, а в-четвертых, проложить такую трассу в условиях густонаселенного города либо местности с неровным ландшафтом гораздо проще, чем в стандартных видах транспорта.

Но нельзя не сказать и о недостатках. Например, если в рамках трассы одна из опор сильно отклонится, это приведет к катастрофе. Хотя, катастрофы возможны и в рамках обычных железных дорог. Другой вопрос, который ведет к сильному удорожанию технологии, это физические нагрузки на опоры. Например, хвост поезда, только выехавший из какого-либо конкретного проема, если говорить простыми словами, как бы "повисает" и оказывает большую нагрузку на следующую опору, при этом смещается и центр тяжести самого поезда, что влияет на все опоры, в целом. Примерно такая же ситуация возникает, когда голова поезда выезжает из проема и так же "повисает", пока не достигнет следующей опоры. Получаются своего рода качели. Как эту проблему намерены решать конструкторы (с помощью несущего крыла, огромной скорости, уменьшением расстояния между опорами...), пока неясно. Но решения есть. И третья проблема - повороты. Поскольку разработчики решили, что длина вагона больше, чем один пролет, стоит вопрос поворотов

Рис. 3 Высокоскоростной Струнный Транспорт Юницкого

Как альтернатива этому существует чисто российская разработка, именуемая Высокоскоростным Струнным Транспортом Юницкого (СТЮ). В ее рамках предлагается использовать поднятые на опорах на высоту 5-25 метров предварительно напряженные рельсы-струны, по которым движутся четырехколесные транспортные модули. Себестоимость у СТЮ оказывается гораздо меньшей - $600-800 тысяч за один километр, а с инфраструктурой и подвижным составом - $900-1200 тысяч за км.

Рис. 4 Пример монорельсового транспорта

Но ближайшее будущее видится все-таки за обычным монорельсовым представлением. Причем в рамках монорельсовых систем сейчас откатываются новейшие технологии по автоматизированию транспорта. Например, американская корпорация Taxi 2000 создает монорельсовую систему автоматических такси SkyWeb Express, которые могут ездить как в рамках города, так и за его пределами. Водитель в таких такси не нужен (прямо как в фантастических книгах и фильмах). Вы указываете точку назначения, и такси само вас туда отвозит, самостоятельно выстраивая оптимальный маршрут. Тут получается все - и безопасность, и точность. Taxi 2000 на данный момент - наиболее реальный и осуществимый проект

Заключение

Поезда на магнитной подушке считаются одним из наиболее перспективных видов транспорта будущего. От обычных поездов и монорельсов поезда на магнитной подушке отличаются полным отсутствием колес – при движении вагоны как бы парят над одним широким рельсом за счет действия магнитных сил. В результате скорость движения такого поезда может достигать 400 км/ч, и в ряде случаев такой транспорт может заменить собой самолет. В настоящее время в мире реализуется на практике только один проект магнитной дороге, называемой также Transrapid.

Многим разработкам и проектам уже по 20-30 лет. И главной задачей для их создателей является привлечение инвесторов. Сама проблема транспорта достаточно существенна, ведь зачастую мы покупаем некоторые продукты так дорого, потому что много затрачено на их перевозку. Вторая проблема - это экология, третья - большая загруженность транспортных путей, что увеличивается год от года, и для некоторых видов транспорта на десятки процентов.

Будем надеяться, что в скором будущем мы сами уже сможем проехаться на транспорте с магнитной подушкой. Время движется...

Список литературы

  1. Дроздова Т.Е. Теоретические основы прогрессивных технологий. - Москва: МГОУ, 2001. - 212 с.
  2. Материаловедение и технология конструкционных материалов / Тялина Л.Н., Федорова Н.В. Учебное пособие. - Тамбов: ТГТУ, 2006. - 457 с.
  3. Методы охраны внутренних вод от загрязнения и истощения / под ред. Гавич И.К. - М.: ЮНИТИ-ДАНА, 2002. - 287 с.
  4. Методы очистки производственных сточных вод / Жуков А.И. Монгайт И.Л., Родзиллер И.Д. - М.: Инфра-М, 2005. - 338 с.
  5. Основы технологий важнейших отраслей промышленности / под ред. Сидорова И.А. Учебник ВУЗов. - М.: Высшая школа, 2003. - 396 с.
  6. Система технологий важнейших отраслей народного хозяйства / Дворцин М.Д., Дмитриенко В.В., Крутикова Л.В., Машихина Л.Г. Учебное пособие. - Хабаровск: ХПИ, 2003. - 523 с.

Магнитоплан или Маглев (от англ. magnetic levitation) — это поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления.

Скорость, достижимая маглев, сравнима со скоростью самолета и позволяет составить конкуренцию воздушным сообщениям на малых (для авиации) расстояниях (до 1000 км). Хотя сама идея такого транспорта не нова, экономические и технические ограничения не позволили ей развернуться в полной мере: для публичного использования технология воплощалась всего несколько раз. В настоящее время, Маглев не может использовать существующую транспортную инфраструктуру, хотя есть проекты с расположением элементов магнитной дороги между рельсов обычной железной дороги или под полотном автотрассы.

На данный момент существует 3 основных технологии магнитного подвеса поездов:

1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS).

Созданная в Германии “железная дорога будущего” и прежде вызывала протесты жителей Шанхая. Но на этот раз власти, напуганные демонстрациями, грозящими вылиться в крупные волнения, пообещали разобраться с поездами. Чтобы вовремя пресекать демонстрации, чиновники даже развесили видеокамеры в тех местах, где чаще всего происходят массовые протесты. Китайская толпа очень организованна и мобильна, она может в считанные секунды собраться и превратиться в демонстрацию с лозунгами.

Это крупнейшие народные выступления в Шанхае со времен антияпонских маршей в 2005 году. Это уже не первый протест, вызванный озабоченностью китайцев ухудшающейся экологией. Минувшим летом многотысячные толпы демонстрантов заставили правительство отложить строительство химического комплекса.

Шанхайский Маглев (Shanghai Maglev Train) – является первой в мире коммерческой железнодорожной линией на магнитном подвесе, а также самым дорогим железнодорожным проектом в Поднебесной.

Проект начал коммерческую эксплуатацию с 1 января 2004 года. Его стоимость – около 1,6 млрд. долларов США (10 млрд юаней).

Столь высокие расходы были связаны, прежде всего, с тем, что большая часть трассы проходит по заболоченной местности, из-за чего строителям пришлось сооружать бетонную подушку для каждой опоры эстакады (а их тут много, через каждые 25 метров). Кстати в некоторых местах толщина этой самой подушки доходит до 70 м.

К слову сказать, шанхайская линия Maglev не самая протяжённая из скоростных магистралей, её протяжённость всего 30 километров от международного аэропорта Пудун до станции метро Лунъян-Лу в городе Шанхай.

Зато это расстояние «Шанхайский маглев» преодолевает всего за 7:20 или 8:10 минут (в зависимости от времени дня). Поезд развивает максимальную скорость в 431 км/час, а его средняя скорость около 250 км/ч.

Правда со своей максимальной скоростью он мчится всего 1,5 минуты, ведь негде там особо разгоняться так, расстояние же не очень большое.

Линия работает с 6:45 до 9:30 вечера, с интервалами движения от 15 до 20 минут.

Стоимость проезда – около 7,3 USD в одну сторону. Для пассажиров с авиабилетами – 5,81 USD. VIP билеты стоят примерно в два раза дороже, чем стандартные.

Он же поезд на магнитной подушке, он же maglev от английского magnetic levitation ("магнитная левитация") - это поезд на магнитной подвеске, движимый и управляемый силой электромагнитного поля. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является аэродинамическое сопротивление . Маглев относится к монорельсовому транспорту .

Монорельс:


Хотчкисса (Arthur Hotchkiss) 1890-х гг.;
изображения с Википедии

изображения с Википедии

Высокоскоростным наземным транспортом (ВСНТ) называют железнодорожный транспорт, который обеспечивает движение поездов со скоростью свыше 200 км/ч (120 миль/ч). Хотя ещё в начале XX века высокоскоростными называли поезда, следующие со скоростями выше 150-160 км/ч.
Сегодня поезда ВСНТ передвигаются по специально выделенным железнодорожным путям - высокоскоростной магистрали (ВСМ), либо на магнитном подвесе, по которым перемещается выше показанный маглев.

Впервые регулярное движение высокоскоростных поездов началось в 1964 году в Японии. В 1981 году поезда ВСНТ стали курсировать и во Франции, а вскоре бо́льшая часть западной Европы, включая Великобританию, оказалась объединена в единую высокоскоростную железнодорожную сеть. Современные высокоскоростные поезда в эксплуатации развивают скорости около 350-400 км/ч, а в испытаниях и вовсе могут разгоняться до 560-580 км/ч, как например JR-Maglev MLX01, установивший во время испытаний в 2003 году скоростной рекорд - 581 км/ч.
В России регулярная эксплуатация высокоскоростных поездов , по общим путям с обычными поездами, началась в 2009 году. И только к 2017 году ожидается завершение строительства первой в России специализированной высокоскоростной железнодорожной магистрали Москва - Санкт-Петербург.


Сапсан Siemens Velaro RUS; максимальная служебная скорость - 230 км/ч,
возможна модернизация до 350 км/ч; фото с Википедии

Кроме пассажиров высокоскоростные поезда перевозят и грузы, например: французская служба La Poste имеет парк специальных электропоездов TGV для перевозки почты и посылок.

Скорость "магнитных" поездов, то есть маглевов, сравнима со скоростью самолёта и позволяет составить конкуренцию воздушному транспорту на ближне- и среднемагистральных направлениях (до 1000 км). Хотя сама идея такого транспорта не нова, экономические и технические ограничения не позволили ей развернуться в полной мере.

На данный момент существует 3 основных технологии магнитного подвеса поездов:

  1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS);
  2. На электромагнитах (электромагнитная подвеска, EMS);
  3. На постоянных магнитах; это новая и потенциально самая экономичная система.

Состав левитирует за счёт отталкивания одинаковых магнитных полюсов и, наоборот, притягивания противоположных полюсов. Движение осуществляется линейным двигателем , расположенным либо на поезде, либо на пути, либо и там, и там. Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава.

Достоинства маглева:

  • теоретически самая высокая скорость из тех, которые можно получить на общедоступном (не спортивном) наземном транспорте;
  • большие перспективы по достижению скоростей, многократно превышающие скорости, используемые в реактивной авиации;
  • низкий шум.

Недостатки маглева:

  • высокая стоимость создания и обслуживания колеи - стоимость постройки одного километра маглев-колеи сопоставима с проходкой километра тоннеля метро закрытым способом;
  • создаваемое электромагнитное поле может оказаться вредным для поездных бригад и окрестных жителей. Даже тяговые трансформаторы, применяемые на электрифицированных переменным током железных дорогах, вредны для машинистов. Но в данном случае напряжённость поля получается на порядок больше. Также, возможно, линии маглева будут недоступны для людей, использующих кардиостимуляторы;
  • рельсовые пути стандартной ширины, перестроенные под скоростное движение, остаются доступными для обычных пассажирских и пригородных поездов. Высокоскоростной путь маглева же ни для чего другого не пригоден; потребуются дополнительные пути для низкоскоростного сообщения.

Наиболее активные разработки маглева ведут Германия и Япония.

*Справка: Что такое синкансэн?
Синкансэн - так называется высокоскоростная сеть железных дорог в Японии, предназначенная для перевозки пассажиров между крупными городами страны. Принадлежит компании Japan Railways. Первая линия была открыта между Осакой и Токио в 1964 году - Токайдо-синкансэн. Эта линия является самой загруженной высокоскоростной железнодорожной линией в мире. На ней перевозится порядка 375 000 пассажиров ежедневно.

"Поезд-пуля" - одно из названий для поездов синкансэн. Поезда могут иметь до 16 вагонов. Каждый вагон достигает длины 25 метров, исключение составляют головные вагоны, длина которых обычно чуть больше. Общая длина поезда составляет порядка 400 метров. Станции для таких поездов тоже очень длинные и специально приспособлены под эти поезда.


Поезда синкансэн серии 200 ~ E5; фото с Википедии

В Японии маглевы часто называются "риниа:ка:" (по-японски リニアカー), происходящее от английского "linear car" из-за используемого на борту линейного двигателя.

JR-Maglev использует электродинамическую подвеску на сверхпроводящих магнитах (EDS), установленных как на поезде, так и на трассе. В отличие от немецкой системы Transrapid , JR-Maglev не использует схему монорельса: поезда движутся в канале между магнитами. Такая схема позволяет развивать бо́льшие скорости, обеспечивает большую безопасность пассажиров в случае эвакуации и простоту в эксплуатации.

В отличие от электромагнитной подвески (EMS), поездам созданным по технологии EDS требуются дополнительные колёса при движении на малых скоростях (до 150 км/ч). При достижении определённой скорости колёса отделяются от земли и поезд "летит" на расстоянии нескольких сантиметров от поверхности. В случае аварии колёса также позволяют осуществить более мягкую остановку поезда.

Для торможения в обычном режиме используются электродинамические тормоза. Для экстренных случаев поезд оборудован выдвигающимися аэродинамическими и дисковыми тормозами на тележках.

Поездка в маглеве с максимальной скоростью 501 км/ч. В описании указано, что видео сделано в 2005 году:

На линии в Яманаси проходят испытания нескольких составов с разными формами носового обтекателя: от обычного заострённого, до практически плоского, длиной 14 метров, призванного избавиться от громкого хлопка, сопровождающего въезд поезда в тоннель на большой скорости. Поезд маглев может полностью управляться компьютером. Машинист осуществляет контроль за работой компьютера и получает изображение пути через видеокамеру (кабина машиниста не имеет окон переднего обзора).

Технология JR-Maglev дороже аналогичной разработки Transrapid, реализованной в Китае (линия до Шанхайского аэропорта), так как требует больших затрат на оборудование трассы сверхпроводящими магнитами и прокладку тоннелей в горах взрывным способом. Общая стоимость проекта может составить 82,5 млрд долларов США. Если проложить линию вдоль прибрежной трассы Токайдо, это потребует меньших затрат, однако потребует строительства большого количества тоннелей малой протяжённости. Несмотря на то, что сам магнитно-левитационный поезд бесшумен, каждый въезд в тоннель на большой скорости будет вызывать хлопок, сравнимый по громкости с взрывом, поэтому прокладка линии в густонаселённых районах невозможна.

  • Поезда на магнитной подушке способны развивать большую скорость, чем обычные поезда.
  • Поезда на магнитной подушке производят меньше шума, чем обычные поезда.
  • Поезда на магнитной подушке сокращают время в пути для пассажиров.
  • Поезда на магнитной подушке используют источники электрической энергии, в меньшей степени загрязняющие атмосферу.

Недостатки поездов на магнитной подушке

  • Поезда на магнитной подушке стоят дороже, чем обычные поезда.
  • Поезда на магнитной подушке требуют особого обучения персонала.
  • Поезда на сверхпроводниковой магнитной подушке используют для создания левитации мощные электромагниты, установленные на рельсе. При этом возникает задача экранировать пассажиров от воздействия сильных магнитных полей.
  • Неожиданное падение напряжения приведет к тому, что вагоны поезда на сверхпроводниковой магнитной подушке опустятся на рельс. На большой скорости это может быть опасным (при эксплуатации поездов типа Inductrack такие - проблемы не возникают, так как колеса поезда позволят вагонам двигаться по инерции до полной остановки).
  • Сильный боковой порыв ветра может нарушить работу поезда на магнитной подушке, сместив вагоны и заставив их прийти в соприкосновение с рельсом. Снег или лед на рельсе также могут вызвать проблемы.

Вопрос

Как изолировать пассажиров от воздействия сильных магнитных полей в поезде на сверхпроводниковых магнитных подушках?

Ответ

Вагоны или, по крайней мере, купе могут быть сделаны из ферромагнитного материала (стали, например), блокирующего линии магнитной индукции. К сожалению, сталь гораздо тяжелее алюминия, обычно использующегося при производстве поездов. Алюминий не является ферромагнетиком и не обеспечивает защиты от магнитных полей, если к нему не подвести токи высокого напряжения, потенциально опасные для пассажиров.

Вопрос

Преодолеет ли поезд на магнитной подушке крутой холм или гору? Не скатится ли он вниз по склону и не останется ли в долине, если отсутствует трение, необходимое для торможения?

Ответ

Линейные индукционные двигатели,- применяемые в поездах на магнитной подушке, способны поднимать такие поезда по более крутым склонам, чем обычные поезда. Более того, линейные индукционные двигатели переключаются на торможение в реверсном режиме, предохраняя поезд от скатывания вниз за счет работы, направленной против силы тяготения.



Загрузка...