electricschool.ru

Состав воздуха на земле. Атмосфера — воздушная оболочка Земли

Строение атмосферы Земли

Атмосфера – это газовая оболочка Земли с содержащимися в ней аэрозольными частицами, движущимися вместе с Землей в мировом пространстве как единое целое и одновременно принимающая участие во вращении Земли. На дне атмосферы в основном протекает наша жизнь.

Своими атмосферами обладают почти все планеты нашей солнечной системы, но только земная атмосфера способна поддерживать жизнь.

Когда 4,5 миллиарда лет назад формировалась наша планета, то, по всей видимости, она была лишена атмосферы. Атмосфера была сформирована в результате вулканических выбросов водяного пара с примесями диоксида углерода, азота и других химических веществ из недр молодой планеты. Но атмосфера может содержать в себе ограниченное количество влаги, поэтому ее избыток в результате конденсации дал начало океанам. Но тогда атмосфера была лишена кислорода. Первые живые организмы, зародившиеся и развившиеся в океане, в результате реакции фотосинтеза (H 2 O + CO 2 = CH 2 O + O 2) стали выделять небольшие порции кислорода, который стал попадать в атмосферу.

Формирование кислорода в атмосфере Земли привело к образованию озонового слоя на высотах примерно 8 – 30 км. И, тем самым, наша планета приобрела защиту от губительного воздействия ультрафиолетового изучения. Это обстоятельство послужило толчком для дальнейшей эволюции жизненных форм на Земле, т.к. в результате усиления фотосинтеза количество кислорода в атмосфере стало стремительно расти, что способствовало формированию и поддержанию жизненных форм в том числе и на суше.

Сегодня наша атмосфера на 78,1% состоит из азота, на 21% из кислорода, на 0,9% из аргона, на 0,04% из диоксида углерода. Совсем малые доли по сравнению с основными газами составляют неон, гелий, метан, криптон.

На частицы газа, содержащиеся в атмосфере, действует сила притяжения Земли. А, учитывая то, что воздух сжимаем, то его плотность с высотой постепенно убывает, переходя в космическое пространство без четкой границы. Половина всей массы земной атмосферы сосредоточена в нижних 5 км, три четверти – в нижних 10 км, девять десятых – в нижних 20 км. 99% массы атмосферы Земли сосредоточено ниже высоты 30 км, а это всего 0,5% экваториального радиуса нашей планеты.

На уровне моря число атомов и молекул на кубический сантиметр воздуха составляет около 2 * 10 19 , на высоте 600 км всего 2 * 10 7 . На уровне моря атом или молекула пролетает примерно 7 * 10 -6 см, прежде чем столкнуться с другой частицей. На высоте 600 км это расстояние составляет около 10 км. И на уровне моря каждую секунду происходит около 7 * 10 9 таких столкновений, на высоте 600 км – всего около одного в минуту!

Но не только давление меняется с высотой. Меняется и температура. Так, например, у подножия высокой горы может быть достаточно жарко, в то время как вершина горы покрыта снегом и температура там в то же время ниже нуля. А стоит подняться на самолете на высоту примерно 10–11 км, как можно услышать сообщение о том, что за бортом –50 градусов, в то время как у поверхности земли градусов на 60–70 теплее…

Изначально ученые предполагали, что температура с высотой убывает до тех пор, пока не достигает абсолютного нуля (-273,16°C). Но это не так.

Атмосфера Земли состоит из четырех слоев: тропосфера, стратосфера, мезосфера, ионосфера (термосфера). Такое деление на слои принято исходя и из данных об изменении температуры с высотой. Самый нижний слой, где температура воздуха падает с высотой, назвали тропосферой. Слой над тропосферой, где падение температуры прекращается, сменяется изотермией и, наконец, температура начинает повышаться, назвали стратосферой. Слой над стратосферой, в котором температура снова стремительно падает – это мезосфера. И, наконец, тот слой, где снова начинается рост температуры, назвали ионосферой или термосферой.

Тропосфера простирается в среднем в нижних 12 км. Именно в ней происходит формирование нашей погоды. Самые высокие облака (перистые) образуются в самых верхних слоях тропосферы. Температура в тропосфере с высотой понижается адиабатически, т.е. изменение температуры происходит вследствие убывания давления с высотой. Температурный профиль тропосферы во многом обусловлен поступающей к поверхности Земли солнечной радиацией. В результате нагрева поверхности Земли Солнцем формируются конвективные и турбулентные потоки, направленные верх, которые формируют погоду. Стоит заметить, что влияние подстилающей поверхности на нижние слои тропосферы распространяется до высоты примерно 1,5 км. Конечно, исключая горные районы.

Верхней границей тропосферы является тропопауза – изотермический слой. Вспомните характерный вид грозовых облаков, вершина которых представляет собой «выброс» перистых облаков, называемых «наковальней». Эта «наковальня» как раз и «растекается» под тропопаузой, т.к. из-за изотермии восходящие потоки воздуха значительно ослабевают, и облако перестает развиваться по вертикали. Но в особых, редких случаях, вершины кучево-дождевых облаков могут вторгаться в нижние слои стратосферы, преодолевая тропопаузу.

Высота тропопаузы зависит от географической широты. Так, на экваторе она находится на высоте примерно 16 км, и ее температура составляет около –80°C. На полюсах тропопауза расположена ниже – примерно на высоте 8 км. Летом ее температура здесь составляет –40°C, и –60°C зимой. Т.о., несмотря на более высокие температуры у поверхности Земли, тропическая тропопауза намного холоднее, чем у полюсов.

Иногда атмосферу, толстым слоем окружающую нашу планету, называют пятым океаном. Недаром второе название самолета - воздушное судно. Атмосфера представляет собой смесь различных газов, среди которых преобладают азот и кислород. Именно благодаря последнему на планете возможна жизнь в той форме, к которой мы все привыкли. Кроме них, есть еще 1% других составляющих. Это инертные (не вступающие в химические взаимодействия) газы, оксид серы, Также в пятом океане содержатся механические примеси: пыль, пепел и пр. Все слои атмосферы в общей сложности простираются почти на 480 км от поверхности (данные различны, подробнее на этом моменте остановимся далее). Такая впечатляющая толщина образует своеобразный непробиваемый щит, защищающий планету от губительного космического излучения и крупных объектов.

Различают следующие слои атмосферы: тропосфера, за ней следует стратосфера, далее мезосфера и, наконец, термосфера. Приведенный порядок начинается у поверхности планеты. Плотные слои атмосферы представлены первыми двумя. Именно они отфильтровывают значительную часть губительного

Самый нижний слой атмосферы - тропосфера, простирается всего на 12 км над уровнем моря (18 км в тропиках). Здесь концентрируется до 90% водяного пара, поэтому облака формируются в нем. Большая часть воздуха также сосредоточена именно здесь. Все последующие слои атмосферы более холодные, так как близость к поверхности позволяет отраженным солнечным лучам нагревать воздух.

Стратосфера простирается почти до 50 км от поверхности. Большинство метеозондов «плавают» в этом слое. Также здесь могут летать некоторые виды самолетов. Одной из удивительных особенностей является температурный режим: в промежутке от 25 до 40 км начинается рост температуры воздуха. От -60 она поднимается почти до 1. Затем наблюдается небольшое снижение до нуля, которое сохраняется до высоты в 55 км. Верхняя граница - это печально известный

Далее почти до 90 км простирается мезосфера. Температура воздуха здесь резко падает. На каждые 100 метров подъема наблюдается снижение на 0,3 градуса. Иногда ее называют наиболее холодным участком атмосферы. Плотность воздуха низкая, однако ее вполне достаточно для создания сопротивления падающим метеорам.

Слои атмосферы в привычном понимании заканчиваются на высоте около 118 км. Здесь формируются знаменитые полярные сияния. Выше начинается область термосферы. Из-за рентгеновских и происходит ионизация тех немногих молекул воздуха, содержащихся в этой области. Данные процессы создают так называемую ионосферу (она часто включается в термосферу, поэтому отдельно не рассматривается).

Все, что находится выше 700 км, называется экзосферой. воздуха крайне незначительна, поэтому они свободно перемещаются, не испытывая сопротивления из-за соударений. Это позволяет отдельным из них накапливать энергию, соответствующую 160 градусам Цельсия, при том, что окружающая температура низка. Молекулы газов распределяются по объему экзосферы в соответствии со своей массой, поэтому наиболее тяжелые из них могут быть обнаружены только в нижней части слоя. Уменьшающееся с высотой притяжение планеты уже не в состоянии удерживать молекулы, поэтому космические высокоэнергетические частицы и излучение сообщают молекулам газов импульс, достаточный для того, чтобы покинуть атмосферу. Эта область является одной из наиболее продолжительных: считается, что атмосфера полностью переходит в космический вакуум на высотах, больших 2000 км (иногда даже фигурирует число 10000). Искусственные вращаются по орбитах еще в термосфере.

Все указанные числа являются ориентировочными, так как границы атмосферных слоев зависят от ряда факторов, например, от активности Солнца.

Голубая планета...

Эта тема должна была появится на сайте одной из первых. Ведь и вертолеты – атмосферные летательные аппараты. Атмосфера Земли – их, так сказать, среда обитания:-). А физические свойства воздуха как раз и определяют качество этого обитания:-). То есть это одна из основ. И об основе всегда пишут вначале. Но сообразил я об этом только сейчас. Однако лучше, как известно, поздно, чем никогда… Коснемся этого вопроса, в дебри и ненужные сложности однако не залезая:-).

Итак… Атмосфера Земли . Это газовая оболочка нашей голубой планеты. Такое название всем известно. А почему голубая? Просто потому, что «голубая» (а также синяя и фиолетовая) составляющая солнечного света (спектра) наиболее хорошо рассеивается в атмосфере, окрашивая ее тем самым в голубовато-синеватые, иногда с оттенком фиолетового тона (в солнечный день, конечно:-)).

Состав атмосферы Земли.

Состав атмосферы достаточно широк. Перечислять в тексте все составляющие не буду, для этого есть хорошая иллюстрация.Состав всех этих газов практически постоянен, за исключением углекислого газа (СО 2 ). Кроме того в атмосфере обязательно содержится вода в виде паров, взвеси капель или кристаллов льда. Количество воды непостоянно и зависит от температуры и, в меньшей степени, от давления воздуха. Кроме того атмосфера Земли (особенно нынешняя) содержит и определенное количество я бы сказал «всякой гадости»:-). Это SO 2 , NH 3 , CO , HCl , NO , кроме того есть там пары ртути Hg . Правда все это находится там в небольших количествах, слава богу:-).

Атмосферу Земли принято делить на несколько следующих друг за другом по высоте над поверхностью зон.

Первая, самая близкая к земле - это тропосфера . Это самый нижний и, так сказать, основной слой для жизнедеятельности разного вида. В нем содержится 80% массы всего атмосферного воздуха (хотя по объему она составляет всего около 1% всей атмосферы) и около 90% всей атмосферной воды. Основная масса всех ветров, облаков, дождей и снегов 🙂 — оттуда. Тропосфера простирается до высот порядка 18 км в тропических широтах и до 10 км в полярных. Температура воздуха в ней падает с подъемом на высоту примерно 0,65º на каждые 100 м.

Атмосферные зоны.

Зона вторая – стратосфера . Надо сказать, что между тропосферой и стратосферой выделяют еще одну узкую зону – тропопаузу . В ней прекращается падение температуры с высотой. Тропопауза имеет среднюю толщину 1,5- 2 км, но границы ее нечетки и тропосфера часто перекрывает стратосферу.

Так вот стратосфера имеет высоту в среднем от 12 км до 50 км. Температура в ней до 25 км остается неизменной (порядка -57ºС), затем где-то до 40 км повышается примерно до 0ºС и далее до 50 км остается неизменной. Стратосфера – относительно спокойная часть атмосферы земли. Неблагоприятные погодные условия в ней практически отсутствуют. Именно в стратосфере располагается знаменитый озоновый слой на высотах от 15-20 км до 55-60 км.

Далее следует небольшой пограничный слой стратопауза , температура в которой сохраняется около 0ºС, и затем следующая зона мезосфера. Она простирается до высот 80-90 км, и в ней температура падает примерно до 80ºС. В мезосфере обычно становятся видны мелкие метеоры, которые начинают в ней светиться и там же сгорают.

Следующий узкий промежуток – мезопауза и за ней зона термосфера . Ее высота – до 700-800 км. Здесь температура опять начинает повышаться и на высотах порядка 300 км может достигать величин порядка 1200ºС. Далее она остается постоянной. Внутри термосферы до высоты около 400 км расположена ионосфера. Здесь воздух сильно ионизирован из-за воздействия солнечной радиации и обладает большой электропроводностью.

Следующая и, вобщем-то, последняя зона – экзосфера . Это так называемая зона рассеяния . Здесь в основном присутствует очень сильно разреженный водород и гелий (с преобладанием водорода). На высотах порядка 3000 км экзосфера переходит в ближнекосмический вакуум.

Вот примерно где-то так. Почему примерно? Потому что слои эти достаточно условны. Возможны различные изменения высоты, состава газов, воды, величины температуры, ионизации и так далее. Кроме того существует еще немало терминов, определяющих строение и состояние атмосферы земли.

Например гомосфера и гетеросфера . В первой атмосферные газы хорошо перемешаны, и их состав достаточно однороден. Вторая расположена выше первой и такого перемешивания там уже практически нет. Газы в ней разделяет гравитация. Граница между этими слоями расположена на высоте 120 км, и называется она турбопауза .

С терминами пожалуй покончим, но обязательно еще добавлю, что условно принято считать, что граница атмосферы расположена на высоте 100 км над уровнем моря. Эта граница называется Линия Кармана .

Добавлю еще две картинки для иллюстрации строения атмосферы. Первая, правда, на немецком, но зато полная и достаточно легка в понимании:-). Ее можно увеличить и хорошо рассмотреть. Вторая показывает изменение температуры атмосферы с высотой.

Строение атмосферы Земли.

Изменение температуры воздуха с высотой.

Современные пилотируемые орбитальные космические аппараты летают на высотах около 300-400 км . Однако это уже не авиация, хотя область, конечно, в определенном смысле близкородственная, и мы о ней еще непременно поговорим:-).

Зона авиации – это тропосфера. Современные атмосферные летательные аппараты могут летать и в нижних слоях стратосферы. Например практический потолок МИГ-25РБ – 23000 м .

Полет в стратосфере.

И именно физические свойства воздуха тропосферы определяют каким будет полет, насколько будет эффективна система управления самолета, как будет влиять на него турбулентность в атмосфере, как будут работать двигатели.

Первое основное свойство – это температура воздуха . В газодинамике она может определяться по шкале Цельсия либо по шкале Кельвина .

Температура t 1 на заданной высоте Н по шкале Цельсия определяется:

t 1 = t — 6,5Н , где t – температура воздуха у земли.

Температура по шкале Кельвина называется абсолютной температурой , ноль по этой шкале – это абсолютный ноль. При абсолютном нуле прекращается тепловое движение молекул. Абсолютный ноль по шкале Кельвина соответствует -273º по шкале Цельсия.

Соответственно температура Т на высоте Н по шкале Кельвина определяется:

T = 273K + t — 6,5H

Давление воздуха . Атмосферное давление измеряется в Паскалях (Н/м 2), в старой системе измерения в атмосферах (атм.). Существует еще такое понятие как барометрическое давление. Это давление, измеренное в миллиметрах ртутного столба при помощи ртутного барометра. Барометрическое давление (давление на уровне моря) равное 760 мм рт. ст. называется стандартным. В физике 1 атм. как раз и равна 760 мм рт.ст.

Плотность воздуха . В аэродинамике чаще всего пользуются таким понятием, как массовая плотность воздуха. Это масса воздуха в 1 м 3 объема. Плотность воздуха с высотой меняется, воздух становится более разреженным.

Влажность воздуха . Показывает количество воды, находящееся в воздухе. Существует понятие «относительная влажность ». Это отношение массы водяного пара к максимально возможной при данной температуре. Понятие 0%, то есть когда воздух совершенно сухой может существовать вобщем-то только в лаборатории. С другой стороны 100%-ная влажность вполне реальна. Это означает, что воздух впитал в себя всю воду, которую мог впитать. Что-то типа абсолютно «полной губки». Высокая относительная влажность снижает плотность воздуха, а малая, соответственно повышает.

В связи с тем, что полеты самолетов происходят при разных атмосферных условиях, то и их полетные и аэродинамические параметры на одном режиме полета могут быть различными. Поэтому для правильной оценки этих параметров введена Международная стандартная атмосфера (МСА) . Она показывает изменение состояния воздуха с подъемом на высоту.

За основные приняты параметры состояния воздуха при нулевой влажности:

давление P = 760 мм рт. ст. (101,3 кПА);

температура t = +15°C (288 К);

массовая плотность ρ = 1,225 kg/m 3 ;

Для МСА принято (как уже было сказано выше:-)), что температура падает в тропосфере на 0,65º на каждые 100 метров высоты.

Стандартная атмосфера (пример до 10000 м).

Таблицы МСА используются при градуировании приборов, а также для штурманских и инженерных расчетов.

Физические свойства воздуха включают в себя также такие понятия как инертность, вязкость и сжимаемость.

Инертность — свойство воздуха, характеризующее его способность сопротивляться изменению состояния покоя или равномерного прямолинейного движения. Мерой инертности является массовая плотность воздуха. Чем она выше, тем выше инертность и сила сопротивления среды при движении в ней самолета.

Вязкость . Определяет сопротивление трения об воздух при движении самолета.

Сжимаемость определяет изменение плотности воздуха при изменении давления. На малых скоростях движения летательного аппарата (до 450 км/ч) изменения давления при обтекании его воздушным потоком не происходит, но при больших скоростях начинает проявляться эффект сжимаемости. Особенно сказывается его влияние на сверхзвуке. Это отдельная область аэродинамики и тема для отдельной статьи:-).

Ну вот кажется пока все… Пора закончить это слегка нудноватое перечисление, без которого однако не обойтись:-). Атмосфера Земли , ее параметры, физические свойства воздуха также важны для летательного аппарата, как и параметры самого аппарата, и о них нельзя было не упомянуть.

Пока, до следующих встреч и более интересных тем 🙂 …

P.S. На сладкое предлагаю посмотреть ролик снятый из кабины спарки МИГ-25ПУ при его полете в стратосферу. Снимал, видимо, турист, у которого есть деньги для таких полетов:-). Снято в основном все через лобовое стекло. Обратите внимание на цвет неба…

Строение и состав атмосферы Земли, нужно сказать, не всегда были постоянными величинами в тот или иной период развития нашей планеты. Сегодня вертикальное строение этого элемента, имеющего общую «толщину» 1,5-2,0 тыс. км, представлено несколькими основными слоями, в том числе:

  1. Тропосферой.
  2. Тропопаузой.
  3. Стратосферой.
  4. Стратопаузой.
  5. Мезосферой и мезопаузой.
  6. Термосферой.
  7. Экзосферой.

Основные элементы атмосферы

Тропосфера представляет собой слой, в котором наблюдаются сильные вертикальные и горизонтальные движения, именно здесь формируется погода, осадочные явления, климатические условия. Она простирается на 7-8 километров от поверхности планеты почти повсеместно, за исключением полярных регионов (там - до 15 км). В тропосфере наблюдается постепенное понижение температуры, приблизительно на 6,4°С с каждым километром высоты. Этот показатель может отличаться для разных широт и времен года.

Состав атмосферы Земли в этой части представлен следующими элементами и их процентными долями:

Азот - около 78 процентов;

Кислород - почти 21 процент;

Аргон - около одного процента;

Углекислый газ - менее 0.05 %.

Единый состав до высоты 90 километров

Кроме того, здесь можно найти пыль, капельки воды, водяной пар, продукты горения, кристаллики льда, морские соли, множество аэрозольных частиц и др. Такой состав атмосферы Земли наблюдается приблизительно до девяноста километров высоты, поэтому воздух примерно одинаков по химическому составу, не только в тропосфере, но и в вышележащих слоях. Но там атмосфера имеет принципиально другие физические свойства. Слой же, который имеет общий химический состав, называют гомосферой.

Какие элементы еще входят в состав атмосферы Земли? В процентах (по объему, в сухом воздухе) здесь представлены такие газы как криптон (около 1.14 х 10 -4), ксенон (8.7 х 10 -7), водород (5.0 х 10 -5), метан (около 1.7 х 10 -4), закись азота (5.0 х 10 -5) и др. В процентах по массе из перечисленных компонентов больше всего закиси азота и водорода, далее следует гелий, криптон и пр.

Физические свойства разных атмосферных слоев

Физические свойства тропосферы тесно связаны с ее прилеганием к поверхности планеты. Отсюда отраженное солнечное тепло в форме инфракрасных лучей направляется обратно вверх, включая процессы теплопроводности и конвекции. Именно поэтому с удалением от земной поверхности падает температура. Такое явление наблюдается до высоты стратосферы (11-17 километров), потом температура становится практически неизменной до отметки 34-35 км, и далее идет опять рост температур до высот в 50 километров (верхняя граница стратосферы). Между стратосферой и тропосферой есть тонкий промежуточный слой тропопаузы (до 1-2 км), где наблюдаются постоянные температуры над экватором - около минус 70°С и ниже. Над полюсами же тропопауза «прогревается» летом до минус 45°С, зимой температуры здесь колеблются около отметки -65°С.

Газовый состав атмосферы Земли включает в себя такой важный элемент, как озон. Его относительно немного у поверхности (десять в минус шестой степени от процента), так как газ образуется под воздействием солнечных лучей из атомарного кислорода в верхних частях атмосферы. В частности, больше всего озона на высоте около 25 км, а весь «озоновый экран» расположен в областях от 7-8 км в области полюсов, от 18 км на экваторе и до пятидесяти километров в общем над поверхностью планеты.

Атмосфера защищает от солнечной радиации

Состав воздуха атмосферы Земли играет очень важную роль в сохранении жизни, так как отдельные химические элементы и композиции удачно ограничивают доступ солнечной радиации к земной поверхности и живущим на ней людям, животным, растениям. Например, молекулы водяного пара эффективно поглощают почти все диапазоны инфракрасного излучения, за исключением длин в интервале от 8 до 13 мкм. Озон же поглощает ультрафиолет вплоть до длины волн в 3100 А. Без его тонкого слоя (составит всего в среднем 3 мм, если его расположить на поверхности планеты) обитаемы могут быть только воды на глубине более 10 метров и подземные пещеры, куда не доходит солнечная радиация.

Ноль по Цельсию в стратопаузе

Между двумя следующими уровнями атмосферы, стратосферой и мезосферой, существует примечательный слой - стратопауза. Он приблизительно соответствует высоте озонных максимумов и здесь наблюдается относительно комфортная для человека температура - около 0°С. Выше стратопаузы, в мезосфере (начинается где-то на высоте 50 км и заканчивается на высоте 80-90 км), наблюдается опять же падение температур с увеличением расстояния от поверхности Земли (до минус 70-80°С). В мезосфере обычно полностью сгорают метеоры.

В термосфере - плюс 2000 К!

Химический состав атмосферы Земли в термосфере (начинается после мезопаузы с высот около 85-90 до 800 км) определяет возможность такого явления, как постепенный нагрев слоев весьма разреженного «воздуха» под воздействием солнечного излучения. В этой части «воздушного покрывала» планеты встречаются температуры от 200 до 2000 К, которые получаются в связи с ионизацией кислорода (выше 300 км находится атомарный кислород), а также рекомбинацией атомов кислорода в молекулы, сопровождающейся выделением большого количества тепла. Термосфера - это место возникновения полярных сияний.

Выше термосферы находится экзосфера - внешний слой атмосферы, из которого легкие и быстро перемещающиеся атомы водорода могут уходить в космическое пространство. Химический состав атмосферы Земли здесь представлен больше отдельными атомами кислорода в нижних слоях, атомами гелия в средних, и почти исключительно атомами водорода - в верхних. Здесь господствуют высокие температуры - около 3000 К и отсутствует атмосферное давление.

Как образовалась земная атмосфера?

Но, как уже упоминалось выше, такой состав атмосферы планета имела не всегда. Всего существует три концепции происхождения этого элемента. Первая гипотеза предполагает, что атмосфера была взята в процессе аккреции из протопланетного облака. Однако сегодня эта теория подвергается существенной критике, так как такая первичная атмосфера должна была быть разрушена солнечным «ветром» от светила в нашей планетной системе. Кроме того, предполагается, что летучие элементы не могли удержаться в зоне образования планет по типу земной группы из-за слишком высоких температур.

Состав первичной атмосферы Земли, как предполагает вторая гипотеза, мог быть сформирован за счет активной бомбардировки поверхности астероидами и кометами, которые прибыли из окрестностей Солнечной системы на ранних этапах развития. Подтвердить или опровергнуть эту концепцию достаточно сложно.

Эксперимент в ИДГ РАН

Самой правдоподобной представляется третья гипотеза, которая считает, что атмосфера появилась в результате выделения газов из мантии земной коры приблизительно 4 млрд. лет назад. Эту концепцию удалось проверить в ИДГ РАН в ходе эксперимента под названием «Царев 2», когда в вакууме был разогрет образец вещества метеорного происхождения. Тогда было зафиксировано выделение таких газов как Н 2 , СН 4 , СО, Н 2 О, N 2 и др. Поэтому ученые справедливо предположили, что химический состав первичной атмосферы Земли включал в себя водяной и углекислый газ, пары фтороводорода (HF), угарного газа (CO), сероводорода (H 2 S), соединений азота, водород, метан (СН 4), пары аммиака (NH 3), аргон и др. Водный пар из первичной атмосферы участвовал в образовании гидросферы, углекислый газ оказался в большей мере в связанном состоянии в органических веществах и горных породах, азот перешел в состав современного воздуха, а также опять в осадочные породы и органические вещества.

Состав первичной атмосферы Земли не позволил бы современным людям находиться в ней без дыхательных аппаратов, так как кислорода в требуемых количествах тогда не было. Этот элемент в значительных объемах появился полтора миллиарда лет назад, как полагают, в связи с развитием процесса фотосинтеза у сине-зеленых и других водорослей, которые являются древнейшими обитателями нашей планеты.

Минимум кислорода

На то, что состав атмосферы Земли изначально был почти бескислородным, указывает то, что в древнейших (катархейских) породах находят легкоокисляемый, но не окисленный графит (углерод). Впоследствии появились так называемые полосчатые железные руды, которые включали в себя прослойки обогащенных окислов железа, что означает появление на планете мощного источника кислорода в молекулярной форме. Но эти элементы попадались только периодически (возможно, те же водоросли или другие продуценты кислорода появились небольшими островками в бескислородной пустыне), в то время как остальной мир был анаэробным. В пользу последнего говорит то, что легко окисляемый пирит находили в виде гальки, обработанной течением без следов химических реакций. Так как текучие воды не могут быть плохо аэрированными, выработалась точка зрения, что атмосфера до начала кембрия содержала менее одного процента кислорода от сегодняшнего состава.

Революционное изменение состава воздуха

Приблизительно в середине протерозоя (1,8 млрд. лет назад) произошла «кислородная революция», когда мир перешел к аэробному дыханию, в ходе которого из одной молекулы питательного вещества (глюкоза) можно получать 38, а не две (как при анаэробном дыхании) единицы энергии. Состав атмосферы Земли, в части кислорода, стал превышать один процент от современного, стал возникать озоновый слой, защищающий организмы от радиации. Именно от нее «скрывались» под толстыми панцирями, к примеру, такие древние животные, как трилобиты. С тех пор и до нашего времени содержание основного «дыхательного» элемента постепенно и медленно возрастало, обеспечивая многообразие развития форм жизни на планете.

Толщина атмосферы - примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере - (5,1-5,3)·10 18 кг. Из них масса сухого воздуха составляет 5,1352 ±0,0003·10 18 кг, общая масса водяных паров в среднем равна 1,27·10 16 кг.

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 ° (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Атмосфера Земли

Граница атмосферы Земли

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца . В периоды низкой активности - например, в 2008-2009 гг - происходит заметное уменьшение размеров этого слоя .

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана , за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение .

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

Благородные газы

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек . Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , , SO 2). Диоксид серы окисляется кислородом воздуха до SO 3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н 2 SO 4) и сульфат аммония ((NH 4) 2 SO 4) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2) 4)).

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

См. также

  • Jacchia (модель атмосферы)

Примечания

Ссылки

Литература

  1. В. В. Парин, Ф. П. Космолинский, Б. А. Душков «Космическая биология и медицина» (издание 2-е, переработанное и дополненное), М.: «Просвещение», 1975, 223 стр.
  2. Н. В. Гусакова «Химия окружающей среды», Ростов-на-Дону: Феникс, 2004, 192 с ISBN 5-222-05386-5
  3. Соколов В. А. Геохимия природных газов, М., 1971;
  4. МакИвен М., Филлипс Л. Химия атмосферы, М., 1978;
  5. Уорк K., Уорнер С. Загрязнение воздуха. Источники и контроль, пер. с англ., М.. 1980;
  6. Мониторинг фонового загрязнения природных сред. в. 1, Л., 1982.


Загрузка...