electricschool.ru

Энтропия и изменение ее в процессах. Изменение энтропии в термодинамических процессах

Математическое выражение второго закона термодинамики записывается:

Здесь знак > относится к необратимым процессам, а знак = к обратимым. Так как энтропия является функцией состояния, ее изменение при протекании как обратимого, так и необратимого процессов одинаково. Поэтому при расчете изменения энтропии необходимо пользоваться формулами для обратимых процессов.

Энтропия обладает свойствами аддитивности, поэтому изменение энтропии в сложном процессе равно сумме изменений энтропий в отдельных его стадиях. Абсолютное значение энтропии какого-либо вещества при любой температуре можно рассчитать, если известна абсолютная энтропия при какой-то одной температуре, например, при 298К и температурные коэффициенты теплоемкости:

Изменение энтропии в различных процессах вычисляют по следующим уравнениям:

При нагревании n – моль вещества от Т 1 до Т 2 при P = const:

Интегрирование дает:

При фазовом превращении:

Где λ – молярная теплота фазового перехода (плавления, испарения, сублимации, модификационного превращения); Т – температура фазового перехода.

При переходе n – моль идеального газа из состояния 1 в состояние 2 при Т=const:

При смешении идеальных газов (Т,Р=const):

Где n 1 и n 2 – числа моль первого и второго газа: V 1 и V 2 – их начальные объемы:

V= V 1 + V 2 - конечный объем.

Определить изменение энтропии при превращении 2г льда, взятого при температуре 253К и давлении 1,013*10 5 н/м 2 в пар при температуре 423К, если теплота плавления льда при 273К равна 0,335 кДж/г, удельная теплоемкость льда равна 2,02 Дж/г*К воды – 4,2 Дж/г. К, скрытая теплота парообразования воды равна 2,255 кДж/г, мольная теплоемкость пара при постоянном давлении:

С р = 30,13+11,3*10 -3 Т, Дж/моль. К

Данный процесс состоит из пяти стадий:

1) нагревание льда от 253 до 273 К – ∆S 1 ;

2) плавление льда при 273 К – ∆S 2 ;

3) нагревание жидкой воды от 273 до 373 К – ∆S 3 ;

4) переход жидкой воды в пар при 373К – ∆S 4 ;

5) нагревание водяного пара от 373 до 473 К – ∆S 5 .

В одном из сосудов вместимостью 0,1 м 3 находится кислород, в другом, вместимостью 0,4 м 3 – азот. В обоих сосудах температура 290 К и давление 1,013 · 10 5 Н/м 2 . Найти изменение энтропии при смешении газов, считая их идеальными.

Находим числа моль газов по уравнению Менделеева – Клапейрона:

Вычислить стандартное изменение энтропии для реакции: Cd+2AgCl = 2Ag+CdCl 2 , если

2.2. Вычисление изменения изобарного и изохорного
потенциалов в различных процессах

В изобарно-изотермическом процессе (Р , Т = const) критерием направления процесса и равновесия является изобарно-изотер­мический потенциал или свободная энергия Гиббса: ∆G ≤ 0. При равновесии G минимальна. В изохорно-изотермическом процессе (V , T = const) критерием направления процесса и равновесия служит изохорно-изотермический потенциал или свободная энергия Гельмгольца: ∆F ≤ 0. При равновесии F минимальна.

Изменения ∆G и ∆F при постоянной температуре рассчитываются по формулам: ∆G = ∆H T S и ∆F = ∆U T S .

Из этих уравнений видно, что свободная энергия G или F являются частью полного запаса энергии системы Н или U за вычетом связанной энергии T S . Свободная энергия может быть извлечена из системы и превращена в работу: -∆G = A р макс и -∆F = = A V макс, где A р макс – максимальная полная работа; A V макс – максимальная полезная работа.

При расширении или сжатии идеального газа при постоянной температуре

Зависимость ∆G и ∆F от температуры выражается уравнением Гиббса – Гельмгольца. Для ∆G в интегральной форме оно записывается так:

или в пределах от 298 до Т :

здесь ∆Н = f (T ).

Для химической реакции

G = ∆F + ∆nRT ,

  • 3.3. Вращение твердого тела вокруг неподвижной оси, его момент инерции и кинетическая энергия.
  • 3.4. Момент импульса. Закон сохранения момента импульса. Второй закон динамики для вращательного движения.
  • Лекция № 4
  • 4.1. Описание движения жидкости и газа. Вязкость жидкостей и газов.
  • 4.2. Уравнение неразрывности.
  • 4.3. Уравнение Бернулли и выводы из него
  • Лекция №5
  • 5.1. Гармонические колебания.
  • 5.2. Сложение гармонических колебаний.
  • 5.3. Сложение перпендикулярных колебаний.
  • 5.4. Дифференциальное уравнение колебаний.
  • 5.5. Энергетические соотношения в колебательных процессах.
  • 5.6. Колебания математического и физического маятников
  • 5.7. Уравнение вынужденных колебаний. Резонанс
  • Лекция №6
  • 6.1.Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны.
  • 6.2. Энергия волны
  • 6.3. Упругие волны в твердом теле
  • Лекция №7
  • 7.1. Основные положения мкт.
  • Агрегатные состояния вещества
  • 7.2. Опытные законы идеального газа
  • Закон Авогадро
  • 7.3. Уравнение состояния идеального газа
  • 7.4. Основное уравнение молекулярно-кинетической теории идеального газа.
  • 7.5. Закон Максвелла для распределения молекул по скоростям.
  • 7.6. Барометрическая формула. Распределение Больцмана
  • Лекция №8
  • 8.2. Столкновения молекул и явления переноса в идеальном газе
  • 8.3. Среднее число столкновений и среднее время свободного пробега молекул
  • 8.4.Средняя длина свободного пробега молекул
  • 8.5. Диффузия в газах
  • 8.6. Вязкость газов
  • 8.7. Теплопроводность газов
  • 8.8. Осмос. Осмотическое давление
  • Лекция №9
  • 9.1.Распределение энергии по степеням свободы молекул
  • 9.2. Внутренняя энергия
  • 9.3. Работа газа при его расширении
  • 9.4. Первое начало термодинамики
  • 9.5. Теплоемкость. Уравнение Майера
  • 9.6. Адиабатный процесс
  • 9.7. Политропический процесс
  • 9.8. Принцип действия тепловой машины. Цикл Карно и его кпд.
  • 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.
  • 9.10. Второе начало термодинамики и его статистический смысл.
  • Лекция №10
  • 10.1. Реальные газы, уравнение Ван-дер-Ваальса.
  • Уравнение Ван-дер-Ваальса неплохо качественно описывает поведение газа при сжижении, но непригодно к процессу затвердевания.
  • 10.2.Основные характеристики и закономерности агрегатных состояний и фазовых переходов.
  • Фазовые переходы второго рода. Жидкий гелий. Сверхтекучесть
  • 10.3. Поверхностное натяжение жидкости. Давление Лапласа.
  • 10.4. Капиллярные явления
  • 10.5. Твёрдые тела
  • Дефекты в кристаллах
  • Тепловые свойства кристаллов
  • Жидкие кристаллы
  • Лекция №11
  • 11.1. Электрические свойства тел. Электрический заряд. Закон сохранения заряда
  • 11.2. Закон Кулона
  • 11.3. Электростатическое поле. Напряженность электрического поля. Силовые линии поля.
  • 11.4. Электрический диполь
  • 11.5. Поток вектора напряженности. Теорема Остроградского-Гаусса
  • 11.6. Работа сил электростатического поля по перемещению зарядов.
  • 11.6. Потенциал. Разность потенциалов. Потенциал точечного заряда, диполя, сферы.
  • 11.7. Связь между напряженностью электрического поля и потенциалом
  • 11.8. Типы диэлектриков. Поляризация диэлектриков.
  • 11.9. Теорема Остроградского-Гаусса для поля в диэлектрике. Связь векторов - сме­щения, - напряженности и - поляризованности
  • 11.10. Проводники в электростатическом поле
  • 11.11. Проводник во внешнем электростатическом поле. Электрическая емкость
  • 11.12. Энергия заряженного проводника, системы проводников и конденсатора
  • Лекция №12
  • 12.1. Электрический ток. Сила и плотность тока.
  • 12.3. Закон Ома для однородного участка цепи. Сопротивление проводников.
  • 12.4. Закон Ома для неоднородного участка цепи
  • 12.5. Закон Джоуля – Ленца. Работа и мощность тока.
  • 12.6. Правила Кирхгофа
  • Лекция №13
  • 13.1. Классическая теория электропроводности металлов
  • 13.2. Термоэлектронная эмиссия. Электрический ток в вакууме.
  • 13.3. Электрический ток в газах. Виды газового разряда.
  • Самостоятельный газовый разряд и его типы
  • Лекция №14
  • 14.1. Магнитное поле. Магнитное взаимодействие токов. Закон Ампера. Вектор магнитной индукции.
  • 14.2. Закон Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов.
  • 14.3. Циркуляция вектора магнитной индукции. Поле соленоида и тороида
  • 14.4. Магнитный поток. Теорема Гаусса
  • 14.5. Работа перемещения проводника и рамки с током в магнитном поле
  • 14.6. Действие магнитного поля на движущийся заряд. Сила Лоренца
  • 14.7. Магнитное поле в веществе. Намагниченность и напряженность магнитного поля.
  • 14.8. Закон полного тока для магнитного поля в веществе
  • 14.9. Виды магнетиков
  • Лекция 15
  • 15.1. Явление электромагнитной индукции.
  • 15.2. Явление самоиндукции
  • 15.3. Энергия магнитного поля
  • 15.4. Электромагнитная теория Максвелла.
  • 1) Первое уравнение Максвелла
  • 2) Ток смешения. Второе уравнение Максвелла
  • 3)Третье и четвертое уравнения Максвелла
  • 4)Полная система уравнений Максвелла в дифференциальной форме
  • 15.5. Переменный ток
  • Лекция № 16
  • 16.1. Основные законы геометрической оптики. Полное внутренне отражение света.
  • 16.2. Отражение и преломление света на сферической поверхности. Линзы.
  • 16.3. Основные фотометрические величины и их единицы
  • 17.1.Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути и оптическая разность хода лучей.
  • 17.2. Способы получения интерференционных картин.
  • 17.3. Интерференция в тонких пленках.
  • 17.4. Просветление оптики
  • 17.5. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Дифракционная решетка. Дифракция на пространственной решетке. Формула Вульфа-Бреггов
  • 17.6. Дифракция Френеля от простейших преград.
  • 17.7. Дифракция в параллельных лучах (дифракция Фраунгофера)
  • 17.8. Дифракция на пространственных решетках. Формула Вульфа-Бреггов.
  • 17.9. Поляризация света. Естественный и поляризованный свет.
  • 17.10. Поляризация света при отражении и преломлении. Закон Брюстера.
  • 17.11.Поляризация при двойном лучепреломлении.
  • 17.12. Вращение плоскости поляризации.
  • 17.13. Дисперсия света. Поглощение (абсорбция) света.
  • Лекция №18
  • 18.1. Квантовая природа излучения. Тепловое излучение и его характеристики. Закон Кирхгофа. Законы Стефана-Больцмана и Вина.
  • 18.2.Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
  • 18.3. Масса и импульс фотона. Давление света. Эффект Комптона.
  • Лекция №19
  • 19.2.Линейчатый спектр атома водорода.
  • 19.3. Постулаты Бора. Опыты Франка и Герца.
  • Лекция №20
  • 20.1.Атомное ядро.
  • 20.2.Ядерные силы.
  • 20.3.Энергия связи ядер. Дефект массы.
  • 20.4.Реакции деления ядер.
  • 2.5.Термоядерный синтез.
  • 20.6.Радиоактивность. Закон радиоактивного распада.
  • План-график самостоятельной работы
  • План-график проведения лабораторно-практических занятий
  • Перечень вопросов для подготовки к коллоквиуму Механика
  • Формулы
  • Определения
  • Вопросы к экзамену
  • Правила и образец оформления лабораторной работы
  • 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.

    Рассматривая КПД тепловой машины, работающей по циклу Карно, можно отметить, что отношение температуры холодильника к температуре нагревателя равно отношению величин количества теплоты, отданного рабочим телом холодильнику, и количества теплоты, принятой от нагревателя. Это значит, что для идеальной тепловой машины, работающей по циклу Карно, выполняется и такое соотношение:
    . ОтношениеЛоренц назвалприведённой теплотой . Для элементарного процесса приведённая теплота будет равна . Значит, при реализации цикла Карно (а он является обратимым циклическим процессом) приведённая теплота остаётся неизменной и ведёт себя как функция состояния, тогда, как известно, что количество теплоты является функцией процесса.

    Используя первое начало термодинамики для обратимых процессов,
    и деля обе части этого равенства на температуру, получим:

    (9-41)

    Выразим из уравнения Менделеева - Клапейрона
    , подставим в уравнение (9-41) и получим:

    (9-42)

    Учтём, что
    , а
    , подставим их в уравнение (9-42) и получим:

    (9-43)

    Правая часть этого равенства является полным дифференциалом, следовательно, при обратимых процессах и приведённая теплота тоже является полным дифференциалом, что является признаком функции состояния.

    Функция состояния, дифференциалом которой является , называетсяэнтропией и обозначается S . Таким образом, энтропия – функция состояния. После введения энтропии формула (9-43) будет иметь вид:

    , (9-44)

    где dS – приращение энтропии. Равенство (9-44) справедливо только для обратимых процессов и удобно для расчёта изменения энтропии при конечных процессах:

    (9-45)

    Если система обратимым путём совершает круговой процесс (цикл), то
    , а, следовательно,S=0, то S = const.

    Выражая количество теплоты через приращение энтропии для элементарного процесса, и подставляя его в уравнение для первого начала термодинамики, получим новый вид записи этого уравнения, которое принято называть основным термодинамическим тождеством:

    (9-46)

    Таким образом, для расчёта изменения энтропии при обратимых процессах удобно использовать приведённую теплоту.

    В случае необратимых неравновесных процессов
    , а для необратимых круговых процессов выполняетсянеравенство Клаузиуса :

    (9-47)

    Рассмотрим, что происходит с энтропией в изолированной термодинамической системе.

    В изолированной термодинамической системе при любом обратимом изменении состояния её энтропия не изменится. Математически это можно записать так: S = const.

    Рассмотрим, что происходит с энтропией термодинамической системы при необратимом процессе. Предположим, что переход из состояния 1 в состояние 2 по путиL 1 обратим, а из состояния 2 в состояние 1 по пути L 2 – необратим (рис.9.13).

    Тогда справедливо неравенство Клаузиуса (9-47). Запишем выражение для правой части этого неравенства, соответствующее нашему примеру:

    .

    Первое слагаемое в этой формуле может быть заменено на изменение энтропии, так как этот процесс обратимый. Тогда неравенство Клаузиуса можно записать в виде:

    .

    Отсюда
    . Так как
    , то окончательно можно записать:

    (9-48)

    Если система изолирована, то
    , а неравенство (9-48) будет иметь вид:

    , (9-49)

    то есть энтропия изолированной системы при необратимом процессе возрастает. Рост энтропии продолжается не беспредельно, а до определённого максимального значения, характерного для данного состояния системы. Это максимальное значение энтропии соответствует состоянию термодинамического равновесия. Рост энтропии при необратимых процессах в изолированной системе означает, что энергия, которой обладает система, становится менее доступной для преобразования в механическую работу. В состоянии равновесия, когда энтропия достигает максимального значения, энергия системы не может быть преобразована в механическую работу.

    Если же система не изолирована, то энтропия может как убывать, так и возрастать в зависимости от направления теплообмена.

    Энтропия как функция состояния системы, может служить таким же параметром состояния, как температура, давление, объём. Изображая тот или иной процесс на диаграмме (Т,S), можно дать математическую интерпретацию количества теплоты, как площади фигуры под кривой, изображающей процесс. На рис.9.14 приведена диаграмма для изотермического процесса в координатах энтропия – температура.

    Энтропия может быть выражена через параметры состояния газа – температуру, давление, объём. Для этого из основного термодинамического тождества (9-46) выразим приращение энтропии:

    .

    Проинтегрируем это выражение и получим:

    (9-50)

    Изменение энтропии можно выразить и через другую пару параметров состояния – давление и объём. Для этого нужно выразить температуры начального и конечного состояний из уравнения состояния идеального газа через давление и объём и подставить в (9-50):

    (9-51)

    При изотермическом расширении газа в пустоту Т 1 =Т 2 , а значит первое слагаемое в формуле (9-47) обнулится и изменение энтропии будет определяться только вторым слагаемым:

    (9-52)

    Несмотря на то, что во многих случаях для расчёта изменения энтропии удобно использовать приведённую теплоту, ясно, что приведённая теплота и энтропия – разные, не тождественные понятия.

    Выясним физический смысл энтропии . Для этого используем формулу (9-52), для изотермического процесса, при котором не изменяется внутренняя энергия, а всевозможные изменения характеристик обусловлены лишь изменением объёма. Рассмотрим связь объёма, занимаемого газом в равновесном состоянии, с числом пространственных микросостояний частиц газа. Число микросостояний частиц газа, с помощью которых реализуется данное макросостояние газа как термодинамической системы, можно подсчитать следующим образом. Разобьём весь объём на элементарные кубические ячейки со стороной d~10 –10 м (порядка величины эффективного диаметра молекулы). Объём такой ячейки будет равен d 3 . В первом состоянии газ занимает объём V 1 , следовательно, число элементарных ячеек, то есть число мест N 1 , которые могут занимать молекулы в этом состоянии будет равно
    . Аналогично для второго состояния с объёмомV 2 получим
    . Следует отметить, что изменение положений молекул соответствует новому микросостоянию. Не всякое изменение микросостояния приведёт к изменению макросостояния. Предположим, молекулы могут заниматьN 1 мест, тогда обмен местами любых молекул в этих N 1 ячейках не приведёт к новому макросостоянию. Однако, переход молекул в другие ячейки, приведёт к изменению макросостояния системы. Число микросостояний газа, соответствующих данному макросостоянию, можно подсчитать, определив число способов размещения частиц этого газа по элементарным ячейкам. Для упрощения расчётов рассмотрим 1 моль идеального газа. Для 1 моля идеального газа формула (9-52) будет иметь вид:

    (9-53)

    Число микросостояний системы, занимающей объём V 1 , обозначим через Г 1 и определим, подсчитав число размещений N A (число Авогадро) молекул, которые содержатся в 1 моле газа, по N 1 ячейкам (местам):
    . Аналогично подсчитаем число микросостояний Г 2 системы, занимающей объём V 2:
    .

    Число микросостояний Г i , с помощью которых можно реализовать i- тое макросостояние, называется термодинамической вероятностью данного макросостояния. Термодинамическая вероятность Г ≥ 1.

    Найдём отношение Г 2 /Г 1:

    .

    Для идеальных газов число свободных мест гораздо больше числа молекул, то есть N 1 >>N A и N 2 >>N A . . Тогда, учитывая выражение чисел N 1 и N 2 через соответствующие объёмы, получим:

    Отсюда можно выразить отношение объёмов через отношение термодинамических вероятностей соответствующих состояний:

    (9-54)

    Подставим (9-54) в (9-53) и получим:
    . Учитывая, что отношение молярной газовой постоянной и числа Авогадро, есть постоянная Больцманаk , а также то, что логарифм отношения двух величин равен разности логарифмов этих величин, получим:. Отсюда можно заключить, что энтропияi- того состояния S i определяется логарифмом числа микросостояний, посредством которых реализуется данное макросостояние:

    (9-55)

    Формула (9-55) называется формулой Больцмана , впервые получившего её и понявшего статистический смысл энтропии , как функции беспорядка . Формула Больцмана имеет более общее значение, чем формула (9-53), то есть может быть использована не только для идеальных газов, и позволяет раскрыть физический смысл энтропии. Чем более упорядочена система, тем меньше число микросостояний, посредством которых осуществляется данное макросостояние, тем меньше энтропия системы. Рост энтропии в изолированной системе, где происходят необратимые процессы, означает движение системы в направлении наиболее вероятного состояния, которым является состояние равновесия. Можно сказать, что энтропия является мерой беспорядка системы; чем больше беспорядка в ней, тем выше энтропия. В этом заключается физический смысл энтропии .

    Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.

    Существует функция состояния - энтропия S , которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.

    Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
    d 2 S < 0).

    Неравенство (4.1) называют неравенством Клаузиуса . Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

    где знак равенства ставится, если весь цикл полностью обратим.

    Энтропию можно определить с помощью двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:

    где k = 1.38 10 -23 Дж/К - постоянная Больцмана (k = R / N A), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана .

    С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:

    где G (E ) - фазовый объем, занятый микроканоническим ансамблем с энергией E .

    Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:

    Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:

    Q обр = TdS , (4.7)

    где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.

    Расчет изменения энтропии для различных процессов

    Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

    (4.8)

    Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

    1) Нагревание или охлаждение при постоянном давлении .

    Количество теплоты, необходимое для изменения температуры системы, выражают с помощью теплоемкости: Q обр = C p dT .

    (4.9)

    Если теплоемкость не зависит от температуры в интервале от T 1 до T 2 , то уравнение (4.8) можно проинтегрировать:

    Если изменение температуры происходит при постоянном объеме, то в формулах (4.9) и (4.10) C p надо заменить на C V .

    2) Изотермическое расширение или сжатие .

    Для расчета энтропии в этом случае надо знать уравнение состояния системы. Расчет основан на использовании соотношения Максвелла:

    (4.11)

    В частности, для изотермического расширения идеального газа (p = nRT / V )

    Этот же результат можно получить, если использовать выражение для теплоты изотермического обратимого расширения идеального газа: Q обр = nRT ln(V 2 /V 1) .

    3) Фазовые переходы .

    При обратимом фазовом переходе температура остается постоянной, а теплота фазового перехода при постоянном давлении равна H фп, поэтому изменение энтропии равно:

    (4.13)

    При плавлении и кипении теплота поглощается, поэтому энтропия в этих процессах возрастает: S тв < S ж < S г. При этом энтропия окружающей среды уменьшается на величину S ф.п. , поэтому изменение энтропии Вселенной равно 0, как и полагается для обратимого процесса в изолированной системе.

    4) Смешение идеальных газов при постоянных температуре и давлении .

    Если n 1 молей одного газа, занимающего объем V 1 , смешиваются с n 2 молями другого газа, занимающего объем V 2 , то общий объем будет равен V 1 + V 2 , причем газы расширяются независимо друг от друга и общее изменение энтропии равно сумме изменений энтропии каждого газа:

    где x i - мольная доля i -го газа в полученной газовой смеси. Изменение энтропии (4.14) всегда положительно, т.к. все ln x i < 0, поэтому идеальные газы всегда смешиваются необратимо.

    Если при тех же условиях смешиваются две порции одного и того же газа, то уравнение (4.14) уже неприменимо. Никаких изменений в системе при смешивании не происходит, и S = 0. Тем не менее, формула (4.14) не содержит никаких индивидуальных параметров газов, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса .

    Абсолютная энтропия

    В отличие от многих других термодинамических функций, энтропия имеет точку отсчета, которая задается постулатом Планка (третьим законом термодинамики) :

    При абсолютном нуле T = 0 К все идеальные кристаллы
    имеют одинаковую энтропию, равную нулю.

    При стремлении температуры к абсолютному нулю не только энтропия стремится к 0, но и ее производные по всем термодинамическим параметрам:

    (x = p , V ). (4.15)

    Это означает, что вблизи абсолютного нуля все термодинамические процессы протекают без изменения энтропии. Это утверждение называют тепловой теоремой Нернста .

    Постулат Планка позволяет ввести понятие абсолютной энтропии вещества, т.е. энтропии, отсчитанной от нулевого значения при T = 0. Для расчета абсолютной энтропии веществ в стандартном состоянии надо знать зависимости теплоемкости C p от температуры для каждой из фаз, а также температуры и энтальпии фазовых переходов. Так, например, абсолютная энтропия газообразного вещества в стандартном состоянии при температуре T складывается из следующих составляющих:

    В термодинамических таблицах обычно приводят значения абсолютной энтропии в стандартном состоянии при температуре 298 К.

    Значения абсолютной энтропии веществ используют для расчета изменения энтропии в химических реакциях:

    . (4.17)

    ПРИМЕРЫ

    Пример 4-1. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

    Решение .

    Интегрируя это равенство, находим зависимость энтропии от объема:

    где const зависит от температуры.

    Пример 4-2. Рассчитайте изменение энтропии при нагревании 0.7 моль моноклинной серы от 25 до 200 о С при давлении 1 атм. Мольная теплоемкость серы равна:

    C p (S тв) = 23.64 Дж/(моль. К),
    C p (S ж) = 35.73 + 1.17 . 10 -3 . T Дж/(моль. К).

    Температура плавления моноклинной серы 119 о С, удельная теплота плавления 45.2 Дж/г.

    Решение . Общее изменение энтропии складывается из трех составляющих: 1) нагревание твердой серы от 25 до 119 о С, 2) плавление, 3) нагревание жидкой серы от 119 до 200 о С.

    4.54 Дж/К.

    2.58 Дж/К.

    S = S 1 + S 2 + S 3 = 11.88 Дж/К.

    Ответ. 11.88 Дж/К.

    Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V 1 до объема V p .

    Решение . а) Изменение энтропии газа при обратимом изотермическом расширении можно найти с помощью термодинамического определения энтропии с расчетом теплоты расширения по первому закону:

    .

    Так как расширение обратимое, то общее изменение энтропии Вселенной равно 0, поэтому изменение энтропии окружающей среды равно изменению энтропии газа с обратным знаком:

    .

    б) Энтропия - функция состояния, поэтому изменение энтропии системы не зависит от того, как совершался процесс - обратимо или необратимо. Изменение энтропии газа при необратимом расширении против внешнего давления будет таким же, как и при обратимом расширении. Другое дело - энтропия окружающей среды, которую можно найти, рассчитав с помощью первого закона теплоту, переданную системе:

    .

    В этом выводе мы использовали тот факт, что U = 0 (температура постоянна). Работа, совершаемая системой против постоянного внешнего давления равна: A = p (V 2 -V 1), а теплота, принятая окружающей средой, равна работе, совершенной системой, с обратным знаком.

    Общее изменение энтропии газа и окружающей среды больше 0:

    ,

    как и полагается для необратимого процесса.

    Пример 4-4. Рассчитайте изменение энтропии 1000 г воды в результате ее замерзания при -5 О С. Теплота плавления льда при 0 о С равна 6008 Дж/моль. Теплоемкости льда и воды равны 34.7 и 75.3 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

    Решение . Необратимый процесс замерзания воды при температуре -5 О С можно представить в виде последовательности обратимых процессов: 1) нагревание воды от
    -5 О С до температуры замерзания (0 О С); 2) замерзание воды при 0 О С; 3) охлаждение льда от 0 до -5 О С:

    Изменение энтропии в первом и третьем процессах (при изменении температуры) рассчитывается по формуле (4.9):

    77.3 Дж/К.

    -35.6 Дж/К.

    Изменение энтропии во втором процессе рассчитывается как для обычного фазового перехода (4.13). Необходимо только иметь в виду, что теплота при замерзании выделяется:

    -1223 Дж/К.

    Т.к. энтропия - функция состояния, общее изменение энтропии равно сумме по этим трем процессам:

    S = S 1 + S 2 + S 3 = -1181 Дж/К.

    Энтропия при замерзании убывает, хотя процесс самопроизвольный. Это связано с тем, что в окружающую среду выделяется теплота и энтропия окружающей среды увеличивается, причем это увеличение больше, чем 1181 Дж/К, поэтому энтропия Вселенной при замерзании воды возрастает, как и полагается в необратимом процессе.

    Ответ. -1181 Дж/К.

    ЗАДАЧИ

    4-1. Приведите пример термодинамического процесса, который может быть проведен как обратимо, так и необратимо. Рассчитайте изменение энтропии системы и окружающей среды в обоих случаях.

    4-2. Проверьте неравенство Клаузиуса для циклического процесса, представленного в задаче 2.14.

    4-3. Рассчитайте мольную энтропию неона при 500 К, если при 298 К и том же объеме энтропия неона равна 146.2 Дж/(моль. К).

    4-4. Рассчитайте изменение энтропии при нагревании 11.2 л азота от 0 до 50 о С и одновременном уменьшении давления от 1 атм до 0.01 атм.

    4-5. Один моль гелия при 100 о С и 1 атм смешивают с 0.5 моль неона при 0 о С и 1 атм. Определите изменение энтропии, если конечное давление равно 1 атм.

    4-6. Рассчитайте изменение энтропии при образовании 1 м 3 воздуха из азота и кислорода (20 об.%) при температуре 25 о С и давлении 1 атм.

    4-7. Три моля идеального одноатомного газа (C V = 3.0 кал/(моль. К)), находящегося при T 1 = 350 K и P 1 = 5.0 атм, обратимо и адиабатически расширяются до давления P 2 = 1.0 атм. Рассчитайте конечные температуру и объем, а также совершенную работу и изменение внутренней энергии, энтальпии и энтропии в этом процессе.

    4-8. Рассчитайте изменение энтропии при нагревании 0.4 моль хлорида натрия от 20 до 850 о С. Мольная теплоемкость хлорида натрия равна:

    C p (NaCl тв) = 45.94 + 16.32 . 10 -3 . T Дж/(моль. К),
    C p (NaCl ж) = 66.53 Дж/(моль. К).

    Температура плавления хлорида натрия 800 о С, теплота плавления 31.0 кДж/моль.

    4-9. Рассчитайте изменение энтропии при смешении 5 кг воды при 80 о С с 10 кг воды при 20 о С. Удельную теплоемкость воды принять равной: C p (H 2 O) = 4.184 Дж/(г. К).

    4-10. Рассчитайте изменение энтропии при добавлении 200 г льда, находящегося при температуре 0 о С, к 200 г воды (90 о С) в изолированном сосуде. Теплота плавления льда равна 6.0 кДж/моль.

    4-11. Для некоторого твердого тела найдена зависимость коэффициента расширения от давления в интервале давлений от p 1 до p 2:

    .

    Насколько уменьшится энтропия этого тела при сжатии от p 1 до p 2 ?

    4-12. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от давления p 1 до давления p 2: а) обратимо; б) против внешнего давления p < p 2 .

    4-13. Запишите выражение для расчета абсолютной энтропии одного моля воды при температуре 300 0 С и давлении 2 атм.

    4-14. Нарисуйте график зависимости стандартной энтропии воды от температуры в интервале от 0 до 400 К.

    4-15. Запишите энтропию одного моля идеального газа как функцию температуры и давления (теплоемкость считать постоянной).

    4-16. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

    4-17. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

    4-18. Один моль газа описывается уравнением состояния

    где f (V ) - некоторая функция, которая не зависит от температуры. Рассчитайте изменение энтропии газа при его необратимом изотермическом расширении от объема V 1 до объема V 2 .

    4-19. Рассчитайте изменение энтропии 1000 г метанола в результате его замерзания при -105 О С. Теплота плавления твердого метанола при -98 о С (т.пл.) равна 3160 Дж/моль. Теплоемкости твердого и жидкого метанола равны 55.6 и 81.6 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

    4-20. Теплоемкость некоторого вещества в интервале температур от T 1 до T 2 изменяется следующим образом:

    Постройте график зависимости энтропии вещества от температуры в этом интервале температур.

    4-21. Пользуясь справочными данными, приведите пример самопроизвольной химической реакции, для которой стандартное изменение энтропии меньше 0.

    4-22. Пользуясь справочными данными, рассчитайте стандартное изменение энтропии в реакции H 2(г) + ЅO 2(г) = H 2 O (г) а) при 25 о С; б) при 300 о С.

    (простого, сложного).

    Энтропия (S ) - функция состояния, количественно характеризующая степень беспорядка системы. Принято относить к молю вещества. Это статистическая величина, поэтому её связывают с термодинамич вероятностью.

    S = R *lnW [Дж/ моль*К] (ф-ла Луи Больцмана)

    R -газовая постоянная =8,314 Дж/моль∙К,

    W - термодинамическая вероятность (это число микросостояний, которыми может быть реализовано данное состояние макросистемы) или: число способов, которыми можно построить данную систему.

    6 Частиц (6 ионов):

      состояние порядка: 1,2,3,4,5,6 W=1 S=0

      состояние беспорядка: W=6! -1 =719 S>>0

    S реальной системы всегда больше 0; состояние беспорядка значительно более вероятно.

    Для идеального кристалл а S = 0. Δ S 0 реакции = ∑ν n Δ S 0 продуктов - ∑ν n Δ S 0 исходных веществ

    Для процессов с участием газообразны х в-тв знак S опр-тся соотношением газообразных молей в реакции.

    Стандартная энтропия вещества – абсолютное значение энтропии вещества при стандартных условиях в любом данном агрегатном состоянии.

    Ориентировочная оценка знака Δ S реакции: можно оценить по изменению числа молей газообразных веществ в реакции, так как они вносят основной вклад в энтропию системы.

    Расчет изменения энтропии в химической реакции

    Связь энтропии с составом вещества

    1) чем сложнее состав и строение в-ва(больше электронов, атомов, масса), тем больше энтропия. S(UU 2)S(Li)

    2) чем прочнее химические связи в веществе, тем меньше энтропия, тем меньше подвижность частиц. S(Сграфит)>S(Cалмаз)

    3) С ростом Т перехода частиц из твердого в жидкое и далее в газообразное энтропия растёт.

    4) Постулат Нернста. При Т=0 энтропия любого чистого вещества = 0, так как движение отсутствует => все вещества принимают состояние идеального кристалла.

    Δ S реакции характеризует стремление систем к наиболее вероятному состоянию, т.е к состоянию с мах энтропией

    Расчет Δ S

    Δ S 0 реакции = ∑ν n Δ S 0 продуктов - ∑ν n Δ S 0 исходных веществ

    Выводы:

    1) Измерение S характеризует стремление сист к наиболее вероятному состоянию с наибольшим беспорядком (с наиб S)

    2) Изменение S не является однозначным критерием возможности самопроизвольного протекания процесса.

    Несамопроизвольными процессами называются те, для совершения которых требуется затрата работы извне.

    Несамопроизвольный процесс приводит к уменьшению порядка в системе и характеризуется уменьшением S.

    S<0 – несамопроизвольный процесс

    Самопроизвольными процессами называют процессы, которые могут протекать без затраты работы извне (обмен, нейтрализация).

    Самопроизвольный процесс приводит к увеличению порядка в системе и характеризуется увеличением S.

    S>0 – самопроизвольный процесс

    15. Опр направления хим р-ции по термодинамич ф-циям состояния. Энергия Гиббса, расчет.

    Определение направления химической реакции по термодинамическим функциям состояния .

    Направление реальной реакции является итогом конкуренции двух противоположных факторов энтропийного Δ S и энергетического Δ Н. Преобладание благоприятного фактора (Δ S >0 и Δ Н <0 )и определяет возможность самопроизвольного протекания процесса

    Энергия Гиббса - термодинамическая функция состояния системы. Обобщённый критерий, учитывающий энтальпийный и энтропийный фактор при p=const и V=const, характеризует направление и предел самопроизвольного протекания реакции.

    Уравнение Гиббса : G = H – T S . G 0 реакции, = Δ Н 0 реакции, 298 -Т Δ S реакции, 298 . где ‘-‘ противодействие факторов

    H-полная энергия; TS - связь энергии, не могут быть превращены в другие типы энергии.

    G реакции = G прод – G исх.

    G -Энергия Гиббса – это часть энергетического эффекта химической реакции, которую можно превратить в работу.

    G характеризует направление и предел самопроизвольного протекания реакции в условиях p и V = const:

    1) G < 0: самопроизвольно 1  2.

    а) оба фактора благоприятны

    H<0,S>0(G<0) 1-2,при любой t

    б)благоприятный энергический фактор (H<0)

    если(H)> TS, то G<0 1-2

    если р-цию определяет энергетический фактор, то наиболее вероятна она при более низких t

    в) благоприятно-вероятный фактор (энтропийный)

    S>0 (H>0 неблагоприятный)

     TS>H, тогда G<0 1-2

    Если р-цию определяет энтропийный фактор, то наиболее вероятно она идет при высоких t.

    2) G > 0: самопроизвольно 2  1.

    3) G = 0: равновесие: 1  2. H = TS.  Оценка температуры разложения вещества производится на основании равновесия(ΔG=ΔH-TΔS)

    На практике граничное условие: 40 КДж/моль. При G > 40, то  невозможна ни при каких условиях.

    Расчет Энергии Гиббса

    1 способ (прредпочтителен при стандартной температуре) ν А А+ ν В В= ν С С+ ν D D

    G 0 р-ции, 298 = ∑ν i G 0 обрi -∑ν j G 0 обрj (продукты- исходные вещества)

    G 0 обр прост. в-в =0 G 0 обр (Н + р-р)=0 устойчиво при стандартных условиях.

    G обр в-ва-изменение энергии Гиббса в реакции образования 1 моля в-ва из простых в-в взятых при стандартных условиях в наиболее устойчивой форме.

    2 способ (приближенный метод расчета, при любой Т)

    G 0 р-ции, = Δ Н 0 р-ции, 298 -ТΔS р-ции, 298

    Им можно пользоваться, если агрегатные состояния всех компонентов реакции не изменяются в заданном интервале Т При этом Δ Н р-ции =const Δ S р-ции =const

    Первый закон термодинамики утверждает, что, хотя между системой и ее окружением возможна передача энергии, энергия никогда не создается и не исчезает. Таким образом, этот закон накладывает на химические и физические превращения требование сохранения энергии. Одно время полагали, что все химические реакции являются экзотермическими, другими словами, химическая реакция может осуществляться только в том случае, если система теряет энергию. Однако в настоящее время известны многие химические и физические превращения, которые являются эндотермическими. Следовательно, по одному лишь изменению энергии или энтальпии еще нельзя предсказать, будет самопроизвольно осуществляться реакция или нет. Чтобы предсказать, возможно ли самопроизвольное протекание реакции, необходимо ввести еще одну термодинамическую функцию состояния, называемую энтропией. Энтропию принято обозначать буквой S.

    Энтропию можно охарактеризовать как меру хаотичности, беспорядка или неупорядоченности в системе. Например, мы уже указывали, что частицы газа в гораздо

    Рис. 5.16. Самопроизвольное смешивание двух газов приводит к возрастанию энтропии, но не сопровождается суммарным изменением энергии в системе.

    большей мере не упорядочены, чем частицы твердого вещества; следовательно, энтропия газов, как правило, намного больше, чем энтропия твердых веществ.

    Но как, зная энтропию, можно предсказать, осуществимо ли самопроизвольно некоторое превращение? Чтобы ответить на этот вопрос, рассмотрим систему, состоящую из двух сосудов, соединенных между собой трубкой с краном (рис. 5.16). Допустим, что в этих сосудах находятся разные газы. Если открыть кран, газы начнут самопроизвольно смешиваться в результате диффузии (см. разд. 3.1). После смешивания газы окажутся в состоянии с большей степенью беспорядка, чем до смешивания. Следовательно, после смешивания они обладают большей энтропией. В этом процессе не происходит изменения энергии. Суммарная энтальпия газов до и после смешивания совершенно одинакова. Однако смешивание приводит к более хаотическому распределению энергии.

    Во многих химических реакциях тоже происходит перераспределение энергии. Например, реакции горения представляют собой экзотермические процессы. В результате горения происходит выделение энергии и ее перераспределение в окружающую среду. Таким образом, можно рассматривать энтропию как меру распределенности энергии. Протекание химических реакций всегда сопровождается перераспределением энергии либо от химической системы к ее окружению, либо, наоборот, от окружения к химической системе. Таким образом, в химической реакции всегда происходит изменение энтропии. Именно это изменение энтропии наряду с изменением энтальпии в реакции необходимо учитывать, если требуется предсказать, возможно ли самопроизвольное протекание рассматриваемой химической реакции. Однако, прежде чем мы обсудим соотношение между изменениями энтропии и энтальпии и возможностью самопроизвольного протекания реакции, необходимо познакомиться со вторым законом термодинамики.

    Второй закон термодинамики

    Этот закон утверждает, что все самопроизвольно протекающие процессы обязательно сопровождаются увеличением суммарной энтропии системы и ее окружения. Второй закон термодинамики, возможно, является одним из наиболее общих положений всей науки в целом. Существует много различных формулировок этого закона. Но главная мысль всех этих формулировок заключается в том, что в любой изолированной системе с течением времени происходит постоянное возрастание степени беспорядка, т.е. энтропии.

    Некоторые формулировки второго закона термодинамики

    1. Каждая система, предоставленная сама себе, изменяется в среднем в направлении состояния с максимальной вероятностью (Г. Льюис).

    2. Состояние с максимальной энтропией является наиболее устойчивым состоянием для изолированной системы (Э. Ферми).

    3. При протекании любого реального процесса невозможно обеспечить средства возвращения каждой из участвующих в нем систем в ее исходное состояние (Г. Льюис).

    4. Каждый физический или химический процесс в природе протекает таким образом, чтобы увеличивалась сумма энтропий всех тел, которые принимают участие в этом процессе (М. Планк).

    5. Невозможна самопроизвольная передача теплоты от более холодного к более горячему телу.

    6. Получение информации представляет собой уменьшение энтропии (Г. Льюис).

    7. Энтропия - это стрелка времени (А. Эддингтон).

    Эту формулировку следует понимать в том смысле, что по изменению энтропии можно судить о последовательности различных самопроизвольных событий. - Прим. перев.

    Из второго закона термодинамики следует, что для любых самопроизвольных процессов

    где полное (суммарное) изменение энтропии в результате химического или физического превращения определяется выражением

    Изменения энтропии в химических реакциях

    Энтропия одного моля вещества в его стандартном состоянии при соответствующей температуре называется стандартной молярной энтропией. Стандартная молярная энтропия обозначается символом и имеет размерность В табл. 5.12 указаны стандартные молярные энтропии ряда элементов и соединений при температуре Отметим, что стандартная молярная энтропия газов, как правило, имеет намного большие значения по сравнению с энтропией твердых тел. Энтропия любого фиксированного количества вещества увеличивается в такой последовательности:

    Стандартные молярные энтропии иногда называют абсолютными энтропиями. Они не являются изменениями энтропии, сопровождающими образование соединения из входящих в него свободных элементов. Следует также отметить, что стандартные молярные энтропии свободных элементов (в виде простых веществ) не равны нулю.

    Третий закон термодинамике утверждает, что энтропия идеального ионного кристалла при температуре абсолютного нуля (0 К) равна нулю.

    Таблица 5.12. Стандартные молярные энтропии

    Изменение стандартной молярной энтропии в химической реакции определяется уравнением

    Вычислим стандартное молярное изменение энтропии для полного сгорания одного моля газообразного водорода при 25°С, пользуясь данными, которые приведены в табл. 5.1.

    Уравнение рассматриваемой реакции имеет вид

    Применяя уравнение (16), находим

    Подстановка в это уравнение значений энтропии при температуре 298 К из табл. 5.12 дает

    Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов - только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается - нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С. А как же вычислить изменение энтропии для окружения этой системы?

    Изменения энтропии для окружения термодинамической системы

    Термодинамические соображения позволяют показать, что изменение энтропии равно отношению энергии, переданной в форме теплоты , к абсолютной температуре Т, при которой происходит эта передача энергии, т.е.

    Это изменение энтропии может быть отнесено либо к системе, либо к ее окружению. Однако имеется одно условие. Тепловая энергия q должна передаваться обратимым путем. В термодинамике обратимым процессом называется такой процесс, который проводится бесконечно медленно и осторожно, так чтобы он все время находился практически в состоянии равновесия. В экзотермическом процессе энергия, теряемая системой, равна энергии, которую приобретает окружение системы. И наоборот, в эндотермическом процессе энергия, поглощаемая системой, равна энергии, которую теряет окружение системы. Поэтому можно записать

    Ранее мы указывали, что при постоянном давлении энергия, передаваемая в форме теплоты в ходе химической реакции, равна изменению энтальпии . Следовательно,

    Воспользуемся теперь уравнением (18) и перепишем уравнение (17) в таком виде:

    Мокружсние

    Суммарное изменение энтропии при протекании химической реакции

    Выше было показано, что суммарное изменение энтропии при протекании самопроизвольного процесса равно сумме изменения энтропии системы и изменения энтропии окружения системы (см. уравнение (15)). Изменение энтропии в системе, где протекает химическая реакция, определяется уравнением (16), а изменение энтропии в окружении системы-уравнением (20). Теперь мы можем вычислить суммарное изменение энтропии, которым сопровождается химическое превращение, и проверить, удовлетворяет ли полученный результат второму закону термодинамики.

    Вычислим полное изменение энтропии, которым сопровождается сгорание одного моля газообразного водорода при 25°С. Удовлетворяет ли результат вычисления второму закону термодинамики?

    Полное изменение энтропии, которым сопровождается всякий процесс, определяется уравнением (15). Подставив в него выражение (20), получим

    Полученное уравнение относится к сгоранию одного моля газообразного водорода при стандартных условиях в соответствии с химическим уравнением, приведенным в предыдущем примере.

    Согласно условию задачи, .

    Значение было вычислено в предыдущем примере и найдено равным

    Стандартная энтальпия сгорания водорода, по данным табл. 5.2, равна

    Следовательно,

    Отметим, что, хотя изменение энтропии в реакционной системе отрицательно, полное изменение энтропии, которым сопровождается протекание реакции, положительно. Следовательно, результат, полученный нами, удовлетворяет второму закону термодинамики.



    Загрузка...