electricschool.ru

Распределение максвелла кратко. Распределение скоростей молекул по Максвеллу. Измерение скоростей молекул. Опыт Штерна. Опытная проверка распределения молекул по скоростям

Функция плотности распределения

Распределение Ма́ксвелла - распределение вероятности , встречающееся в физике и химии . Оно лежит в основании кинетической теории газов , которая объясняет многие фундаментальные свойства газов, включая давление и диффузию . Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нем обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе.

Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования упругих соударений над всеми другими процессами. Это верно, например, в физике ионосферы и космической плазмы , где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантовая де Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и - постоянная Больцмана . (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая статистическая сумма .

Распределение Максвелла

Распределение по вектору импульса

Представленное ниже очень сильно отличается от вывода, предложенного Джеймсом Клерком Максвеллом и позже описанного с меньшим количеством предположений Людвигом Больцманом .

В случае идеального газа , состоящего из невзаимодействующих атомов в основном состоянии, вся энергия находится в форме кинетической энергии. Кинетическая энергия соотносится с импульсом частицы следующим образом

,

где - квадрат вектора импульса .

Мы можем поэтому переписать уравнение (1) как:

,

где - статсумма , соответствующая знаменателю в уравнении (1), - молекулярная масса газа, - термодинамическая температура, и - постоянная Больцмана . Это распределение пропорционально функции плотности вероятности нахождения молекулы в состоянии с этими значениями компонентов импульса. Таким образом:

Постоянная нормировки C , определяется из условия, в соответствии с которым вероятность того, что молекулы имеют какой-либо вообще импульс, должна быть равна единице. Поэтому интеграл уравнения (4) по всем значениям и должен быть равен единице. Можно показать, что:

.

Таким образом, чтобы интеграл в уравнении (4) имел значение 1 необходимо, чтобы

.

Подставляя выражение (6) в уравнение (4) и используя тот факт, что , мы получим

.

Распределение по вектору скорости

Учитывая, что плотность распределения по скоростям пропорциональна плотности распределения по импульсам:

и используя мы получим:

,

что является распределением Максвелла по скоростям. Вероятность обнаружения частицы в бесконечно малом элементе около скорости равна

Распределение по абсолютной величине импульса

Интегрируя, мы можем найти распределение по абсолютной величине импульса

Распределение по энергии

Наконец, используя соотношения и , мы получаем распределение по кинетической энергии:

Распределение по проекции скорости

Распределение Максвелла для вектора скорости - является произведением распределений для каждого из трех направлений:

,

где распределение по одному направлению:

Это распределение имеет форму нормального распределения . Как и следует ожидать для покоящегося газа, средняя скорость в любом направлении равна нулю.

Распределение по модулю скоростей

Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как:

поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально , то будет иметь хи-квадрат распределение с тремя степенями свободы. Если - функция плотности вероятности для модуля скорости, то:

,

таким образом, функция плотности вероятности для модуля скорости равна

Характерная скорость

Хотя Уравнение (11) дает распределение скоростей, или, другими словами, долю молекул, имеющих специфическую скорость, часто более интересны другие величины, такие как средние скорости частиц. В следующих подразделах мы определим и получим наиболее вероятную скорость , среднюю скорость и среднеквадратичную скорость .

Наиболее вероятная скорость

наиболее вероятная скорость , - вероятность обладания которой любой молекулой системы максимальна, и которая соответствует максимальному значению . Чтобы найти её, необходимо вычислить , приравнять её нулю и решить относительно :

Средняя скорость

Среднеквадратичная скорость

Подставляя и интегрируя, мы получим

Вывод распределения по Максвеллу

Получим теперь формулу распределения так, как это делал сам Джеймс Клерк Максвелл .
Рассмотрим пространство скоростных точек (каждую молекулу представляем как точку в системе координат ) в стационарном состоянии газа. Выберем бесконечно малый элемент объема . Так как газ стационарный, количество скоростных точек в остается неизменным с течением времени. Пространство скоростей изотропно , поэтому функции плотности вероятности для всех направлений одинаковы.

Максвелл предположил, что распределения скоростей по направлениям статистически независимы, то есть компонента скорости молекулы не зависит от и компонент.

- фактически вероятность нахождения скоростной точки в объеме .

Правая часть не зависит от и , значит и левая от и не зависит. Однако и равноправны, следовательно левая часть не зависит также и от . Значит данное выражение может лишь равняться некоторой константе.

Теперь нужно сделать принципиальный шаг - ввести температуру. Кинетическое определение температуры (как меры средней кинетической энергии движения молекул).

Движение молекул газа подчиняется законам статистической фи-зики. В среднем скорости и энергии всех молекул одинаковы. Од-нако в каждый момент времени энергия и скорости отдельных молекул могут значительно отличаться от среднего значения.

С помощью теории вероятности Максвеллу удалось вывести формулу для относительной частоты, с которой в газе при данной температуре встречаются молекулы со скоростями в определенном интервале значений.

Закон распределения Максвелла определяет относительное число молекул dN/N, скорости которых лежат в интервале (u, u + du ).

Оно имеет вид:

где N - общее число молекул газа; - число молекул, скорости которых заключены в определенном интервале; u - нижняя граница интервала скоростей; d u - величина интервала скоростей; T - температура газа; e = 2,718… - основание натуральных логарифмов;

k = 1,38×10 -23 Дж/К - постоянная Больцмана; m 0 - масса молекулы.

При получении этой формулы Максвелл основывался на следующих предположениях:

1. Газ состоит из большого числа N одинаковых молекул.

2. Температура газа постоянна.

3. Молекулы газа совершают тепловое хаотическое движение.

4. На газ не действуют силовые поля.

Отметим , что под знаком экспоненты в формуле (8.29) стоит отношение кинетической энергии молекулы к величине kT , характеризующей среднее (по молекулам) значение этой энергии.

Распределение Максвелла показывает, какая доля dN/N общего числа молекул данного газа обладает скоростью в интервале от u до u + du.

График функций распределения (рис. 8.5) асимметричен . Положение максимума характеризует наиболее часто встречающуюся скорость, которую называют наиболее вероятной скоростью u m . Скорости, превышающие u m , встречаются чаще, чем меньшие скорости. С повышением температуры максимум распределения сдвигается в направлении больших скоростей.

Одновременно кривая становится более плоской (площадь, заключенная под кривой, не может измениться, так как число молекул N остается постоянным).

Рис. 8.5

Для определения наиболее вероятной скорости нужно исследовать на максимум функцию распределения Максвелла (приравнять первую производную к нулю и решить относительно u). В результате получаем:

.

Мы опустили множители, не зависящие от u. Осуществив дифференцирование, придем к уравнению:

.

Первый сомножитель (экспонента) обращается в нуль при u = ¥, а третий сомножитель (u) при u = 0. Однако из графика (рис. 8.5) видно, что значения u = 0 и u = ¥ соответствуют минимумам функции (8.29). Следовательно, значение u , отвечающее максимуму, получается из равенства нулю второй скобки: . Отсюда


. (8.30)

Введем обозначения для функции распределения молекул по скоростям (8.29):

. (8.31)

Известно, что среднее значение некоторой физической величины j(x ) можно вычислить по формуле:

При столкновении молекулы газа изменяют свои скорости. Изменение скорости молекул происходит случайным образом. Нельзя заранее предсказать, какой численно скоростью будет обладать данная молекула: эта скорость случайна.

Распределение молекул по модулям скоростей описывают с помощью функции распределения f(v):

где отношение — равно доле молекул, скорости которых лежат в интервале от v до v + dv. dv - ширина интервала (рис. 2).

Рис. 2. Интервал скоростей

Зная вид f(v), можно найти число молекул ΔN V из числа данных молекул N, скорости которых попадают внутрь интервала скоростей от v до v + Δv . Отношение

(14)

дает вероятность того, что скорость молекулы будет иметь значение в пределах данного интервала скоростей dv.

Функция f(v) должна удовлетворять условию нормировки, то есть должно выполняться условие:

(15)

Левая часть выражения (17.3) дает вероятность того, что молекула обладает скоростью в интервале от 0 до ∞. Поскольку скорость молекулы обязательно имеет какое-то значение, то указанная вероятность есть вероятность достоверного события и, следовательно, равна 1.

Функция распределения была найдена теоретически Максвеллом. Она имеет следующий вид:

(16)

где т 0 - масса молекулы.

Выражение (16) называется функцией распределения Максвелла.

Из (16) следует, что вид распределения молекул по скоростям зависит от природы газа (массы молекулы) и температуры Т. Давление и объем на распределение молекул по скоростям не влияют.

Рис.3. График функции распределения Максвелла

Схематичный график функции распределения Максвелла дан на рис. 3. Проведем анализ графика.

1. При скоростях стремящихся к нулю (v - >0) и к бесконечности (v -> ∞ ) функция распределения также стремится к нулю. Это означает, что очень большие и очень маленькие скорости молекул маловероятны.

2. Скорость v B , отвечающая максимуму функции распределения, будет наиболее вероятной. Это означает, что основная часть молекул обладает скоростями близкими к вероятной.

Можно получить формулу для расчета наиболее вероятной скорости:

(17)

где kпостоянная Больцмана ; т 0 - масса молекулы.

3. В соответствии с условием нормировки (15) площадь, ограниченная кривой f(v) и осью абсцисс равна единице.

4. Кривая распределения имеет асимметричный характер. Это означает, что доля молекул, имеющих скорости больше наиболее вероятной, больше доли молекул, имеющих скорости меньше наиболее вероятной.

5. Вид кривой зависит от температуры и природы газа. На рис. 4 приведена функция распределения для одного и того же газа, находящегося при разных температурах. При нагревании максимум кривой понижается и смещается вправо, так как доля «быстрых» молекул возрастает, а доля «медленных» - уменьшается. Площадь под обеими кривыми остается постоянной и равной единице.


Установленный Максвеллом закон распределения молекул по скоростям и вытекающие из него следствия справедливы только для газа, находящегося в равновесном состоянии. Закон Максвелла — статистический, применять его можно только к большому числу частиц

Рис. 4. Распределения Максвелла при разных температурах

Пользуясь функцией распределения Максвелла f(v) , можно найти ряд средних величин, характеризующих состояние молекул.

Средняя арифметическая скорость - сумма скоростей всех молекул, деленная на число молекул:

. (18)

Средняя квадратичная скорость, определяющая среднюю кинетическую энергию молекул (см. формулу (10)), по определению равна

<v КВ > = (19)

§4 Закон Максвелла о распределении по скоростям и энергиям

Закон распределения молекул идеального газа по скоростям, теоретически полученный Максвеллом в 1860 г. определяет, какое число dN молекул однородного (p = const) одноатомного идеального газа из общего числа N его молекул в единице объёма имеет при данной температуре Т скорости, заключенные в интервале от v до v + dv .

Для вывода функции распределения молекул по скоростям f ( v ) равной отношению числа молекул dN , скорости которых лежат в интервале v ÷v + dv к общему числу молекул N и величине интервала dv

Максвелл использовал два предложения:

а) все направления в пространстве равноправны и поэтому любое направление движения частицы, т.е. любое направление скорости одинаково вероятно. Это свойство иногда называют свойством изотропности функции распределения.

б) движение по трем взаимно перпендикулярным осям независимы т.е. х-компоненты скорости не зависит от того каково значения ее компонент или . И тогда вывод f ( v ) делается сначала для одной компоненты , а затем обобщается на все координаты скорости.

Считается также, что газ состоит из очень большого числа N тождественных молекул находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Силовые поля на газ не действуют.

Функции f ( v ) определяет относительное число молекул dN ( v )/ N скорости которых лежат в интервале от v до v + dv (например: газ имеет N = 10 6 молекул, при этом dN = 100

молекул имеют скорости от v =100 до v + dv =101 м/с (dv = 1 м ) тогда .

Используя методы теории вероятностей, Максвелл нашел функцию f ( v ) - закон распределения молекул идеального газа по скоростям:

f ( v ) зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т )

f ( v ) зависит от отношения кинетической энергии молекулы, отвечающей рассматриваемой скорости к величине kT характеризующей среднюю тепловую энергию молекул газа.

При малых v и функция f ( v ) изменяется практически по параболе . П ри возрастании v множитель уменьшается быстрее, чем растет множитель , т.е. имеется max функции f ( v ) . Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью найдем из условия

Следовательно, с ростом температуры наиболее вероятная скорость растёт, но площадь S , ограниченная кривой функции распределения остаётся неизменной, так как из условия нормировки (так как вероятность достоверного события равна 1), поэтому при повышении температуры кривая распределения f ( v ) будет растягиваться и понижаться.

В статистической физике среднее значение какой-либо величины определяется как интеграл от 0 до бесконечности произведения величины на плотность вероятности этой величины (статистический вес)

< X >=

Тогда средняя арифметическая скорость молекул

И интегрируя по частям получили

Скорости, характеризующие состояние газа

§5 Экспериментальная проверка закона распределения Максвелла - опыт Штерна

Вдоль оси внутреннего цилиндра с целью натянута платиновая проволока, покрытая слоем серебра, которая нагревается током. При нагревании серебро испаряется, атомы серебра вылетают через щель и попадают на внутреннюю поверхность второго цилиндра. Если оба цилиндра неподвижны, то все атомы независимо от их скорости попадают в одно и то же место В. При вращении цилиндров с угловой скоростью ω атома серебра попадут в точки В’, B ’’ и так далее. По величине ω, расстоянию? и смещению х = ВВ’ можно вычислить скорость атомов, попавших в точку В’.

Изображение щели получается размытым. Исследуя толщину осаждённого слоя, можно оценить распределение молекул по скоростям, которое соответствует максвелловскому распределению.

§6 Барометрическая формула

Распределение Больцмана

До сих пор рассматривалось поведение идеального газа, не подверженного воздействию внешних силовых полей. Из опыта хорошо известно, что при действии внешних сил равномерное распространение частиц в пространстве может нарушиться. Так под действием силы тяжести молекулы стремятся опуститься на дно сосуда. Интенсивное тепловое движение препятствует осаждению, и молекулы распространяются так, что их концентрация постепенно уменьшается по мере увеличения высоты.

Выведем закон изменения давления с высотой предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно p , то на высоте h + dh оно равно p + dp (при dh > 0, dp < 0, так как p уменьшается с увеличением h ).

Разность давления на высотах h и h + dh мы можем определить как вес молекул воздуха заключённого в объёме с площадью основания равного 1 и высотой dh .

плотность на высоте h , и так как , то = const .

Тогда

Из уравнения Менделеева-Клапейрона.

Тогда

Или

С изменением высоты от h 1 до h 2 давление изменяется от p 1 до p 2

Пропотенцируем данное выражение (

Барометрическая формула, показывает, как меняется давление с высотой

Статистические распределения

При тепловом движении положения частиц, величина и направление их скоростей изменяются случайным образом. Вследствие гигантского числа частиц случайный характер их движения, проявляется в существовании определенных статистических закономерностей в распределении частиц системы по координатам, значениям скоростей и т.д. Подобные распределения характеризуются соответствующими функциями распределения. Функция распределения (плотность вероятности) характеризует распределения частиц по соответствующей переменной (координаты, величины скоростей и т.д). В основе классической статистики лежат следующие положения:

Все частицы классической системы различимы (т.е. их можно пронумеровать и следить за каждой частицей);

Все динамические переменные, характеризующие состояние частицы, изменяются непрерывно;

В заданном состоянии может находиться неограниченное число частиц.

В состоянии теплового равновесия как бы не изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул в газе, при Т=cоnst, остается постоянной и равной


Это объясняется тем, что в газе устанавливается некоторое стационарное статистическое распределение молекул по значениям скоростей, называемое распределением Максвелла. Распределение Максвелла описывается некоторой функцией f(u), называемой функцией распределения молекул по скоростям .

,

где N – общее число молекул, dN(u) – число молекул, скорости которых принадлежат интервалу скоростей от u до u + du.

Таким образом, функция Максвелла f(u) равна вероятности того, что величина скорости наугад выбранной молекулы принадлежит единичному интервалу скоростей вблизи значения u. Или она равна доле молекул, скорости которых принадлежат единичному интервалу скоростей вблизи значения u.

Явный вид функции f(u) был получен теоретически Максвеллом:

.

График функции распределения приведен на рис. 12. Из графика следует, что функция распределения стремится к нулю при u®0 и u®¥ и проходит через максимум при некоторой скорости u В, называемой наиболее вероятной скоростью . Этой скоростью и близкой к ней обладает наибольшее число молекул. Кривая несимметрична относительно u В. Значение наиболее вероятной скорости можно найти, используя условие для максимума функции f(u).

.

На рис. 13 показано смещение u В с изменением температуры, при этом площадь под графиком остается постоянной и равной 1, что следует из условия нормировки функции Максвелла

Условие нормировки следует из смысла данного интеграла – он определяет вероятность того, что скорость молекулы попадает в интервал скоростей от 0 до ¥. Это достоверное событие, его вероятность, по определению, принимается равной 1.



Загрузка...