electricschool.ru

Газоразрядные лампы: виды, устройство, как правильно выбрать лучшие. Общие свойства разрядов, классификация разрядных ламп и области их применения Разрядные лампы

Области применения

Благодаря линейчатому спектру излучения газоразрядные лампы первоначально применялись лишь в специальных случаях, когда получение заданного спектрального состава излучения являлось фактором более важным, чем значение световой отдачи. Возникла широкая номенклатура , предназначенных для применения в научно-исследовательской аппаратуре, которые объединяют под одним общим названием - спектральные лампы.

Рисунок 1. Спектральные лампы с парами натрия и магния

Возможность создания интенсивного ультрафиолетового излучения, отличающегося высокими химической активностью и биологическим действием, привела к использованию газоразрядных ламп в химической и полиграфической промышленности, а также в медицине.

Короткая дуга в газе или парах металла при сверхвысоком давлении отличается высокой яркостью, что позволило в настоящее время отказаться от открытой угольной дуги в прожекторной технике.

Применение люминофоров, позволившее получать газоразрядные лампы с непрерывным спектром излучения в видимой области, определило возможность внедрения газоразрядных ламп в осветительные установки и вытеснение из ряда областей ламп накаливания.

Особенности изотермической плазмы, обеспечивающей получение спектра излучения, близкого к излучению тепловых источников, при температурах, недоступных в лампах накаливания, привели к разработке сверхмощных осветительных ламп со спектром, практически совпадающим с солнечным.

Практическая безынерционность газового разряда позволила применить газоразрядные лампы в фототелеграфе и вычислительной технике, а также создать импульсные лампы, концентрирующие в кратковременном световом импульсе огромную световую энергию.

Видео 1. Импульсные лампы

Требования снижения расхода электроэнергии во всех областях народного хозяйства расширяют применение экономичных газоразрядных ламп, объем выпуска которых непрерывно растет.

Лампы тлеющего разряда

Как известно, нормальный тлеющий разряд возникает при малых плотностях тока. Если при этом расстояние между катодом и анодом настолько мало, что в его пределах не может разместиться столб разряда, то имеют место катодное свечение и отрицательное тлеющее свечение, покрывающие поверхность катода. Расход мощности в лампе тлеющего разряда весьма мал, так как мал ток, а напряжение определяется лишь катодным падением. Излучаемый лампой световой поток незначителен, однако совершенно достаточен для того, чтобы зажигание лампы было заметным, особенно если разряд происходит в газе, дающем цветное излучение, например в неоне (длина волны 600 нм, красный цвет излучения). Такие лампы различной конструкции широко используют в качестве индикаторов. Так называемые цифровые лампы являлись ранее составной частью многих автоматических устройств с цифровыми указателями.

Рисунок 3. Лампа тлеющего разряда предназначенная для индикации цифр

При длинном газоразрядном промежутке с расстоянием между электродами значительно большим, чем прикатодная область, основное излучение разряда сосредотачивается в столбе разряда, который при тлеющем разряде отличается от столба при дуговом разряде лишь меньшей плотностью тока. Излучение такого столба может иметь высокую световую отдачу при большой длине. Высокое значение катодного падения напряжения в тлеющем разряде обусловило разработку ламп на высокое напряжение питания, то есть напряжение на них значительно превосходит напряжение, считающееся безопасным по условиям работы в закрытых помещениях, особенно бытовых. Однако такие лампы с успехом применяют для различного рода рекламных и сигнальных установок.

Рисунок 4. Лампы с длинным столбом тлеющего разряда

Преимуществом лампы тлеющего разряда является простота конструкции катода по сравнению с катодом лампы дугового разряда. Кроме того, тлеющий разряд менее чувствителен к наличию случайных примесей в газоразрядном пространстве, а следовательно, более долговечен.

Лампы дугового разряда

Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 10 4 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 10 6 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.

При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.

Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.

После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.

Рисунок 5. Трубчатая газоразрядная лампа низкого давления

Рисунок 6. Газоразрядная лампа высокого давления

Рисунок 7. Газоразрядная лампа сверхвысокого давления

Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.

Классификация ламп

Аналогично лампам накаливания газоразрядные лампы отличаются между собой областью применения, видом разряда, давлением и видом наполняющего газа или паров металла, использованием люминофора. Если смотреть глазами изготовителей газоразрядных ламп то они могут также отличаться особенностями конструкций, важнейшими из которых являются форма и размеры колбы (газоразрядного промежутка), используемый материал из которого изготавливается колба, материал и конструкция электродов, конструкция цоколей и выводов.

При классификации газоразрядных ламп могут возникнуть некоторые затруднения связанные с многообразием признаков, на основе которых они могут быть классифицированы. В связи с этим для классификации принятой в настоящее время и используемой в качестве основы системы обозначений газоразрядных ламп, определен ограниченный ряд признаков. Стоит отметить, что для ртутных трубчатых низкого давления, являющихся наиболее массовыми газоразрядными лампами, существует своя система обозначений.

Итак, для обозначения газоразрядных ламп пользуются следующими основными признаками:

  1. рабочее давление (лампы сверхвысокого давления – более 10 6 Па, высокого давления – от 3 × 10 4 до 10 6 Па и низкого давления – от 0,1 до 10 4 Па);
  2. состав наполнителя, в котором происходит разряд (газ, пары металла и их соединений);
  3. наименование используемого газа или пара металла (ксенон – Кс, натрий – На, ртуть – Р и тому подобные);
  4. вид разряда (импульсный – И, тлеющий – Т, дуговой – Д).

Форма колбы обозначается буквами: Т – трубчатая, Ш – шаровая; если на колбу лампы наносится люминофор то в обозначение добавляется буква Л. Лампы делятся также по: области свечения – лампы тлеющего свечения и лампы со столбом разряда; по способу охлаждения – на лампы с принудительным и естественным воздушным охлаждением, лампы с водяным охлаждением.

Ртутные трубчатые люминесцентные лампы низкого давления принято обозначать проще. Например, в их обозначении первая буква Л говорит о том, что лампа принадлежит к данному виду источников света, последующие буквы – а их может быть одна, две или даже три, обозначают цветность излучения. Цветность является важнейшим параметром обозначения, так как цветность определяет область использования лампы.

Классификация газоразрядных ламп может также вестись по их значимости в области техники освещения: дуговые лампы высокого давления с исправленной цветностью; дуговые трубчатые лампы высокого давления; дуговые высокого давления; дуговые натриевые лампы низкого и высокого давления; дуговые высокого давления; дуговые шаровые сверхвысокого давления; дуговые ксеноновые трубчатые и шаровые лампы; люминесцентные лампы низкого давления; электродосветные, импульсные и другие виды специальных газоразрядных ламп.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Классификация пускорегулирующих аппаратов - светотехнических изделий, с помощью которых осуществляется питание разрядной лампы от электрической сети. Стартерные и бесстартерные ПРА для люминесцентных ламп. Зажигающие устройства для ламп высокого давления.

    курсовая работа , добавлен 02.05.2011

    Спектральные характеристики излучения разных видов производимых ламп – источников света. Принцип действия, срок службы стандартных ламп накаливания, галогеновых, люминисцентных, разрядных ламп высокого давления, светодиодов. Оценка новых разработок.

    реферат , добавлен 04.03.2012

    Применение разрядных ламп в различных областях народного хозяйства. Технические данные некоторых трубчатых ксеноновых ламп. Перспективность дальнейшего совершенствования трубчатых ксеноновых ламп. Конструктивные особенности, виды режимов работы ламп.

    презентация , добавлен 24.06.2012

    Основные сведения о природе и свойствах ультрафиолетового излучения. Обозначение области применения УФ-света в медицине в лечебных, профилактических и бактерицидных целях. Рассмотрение источников излучения и принципа работы ртутно-кварцевой лампы.

    методичка , добавлен 30.04.2014

    Сущность и способы получения спектра, особенности его формы в изолированных атомах и разреженных газах. Принцип работы и назначение спектрографов, их структура и компоненты. Методика возбуждения излучения неоновой и ртутной ламп и лампы накаливания.

    лабораторная работа , добавлен 26.10.2009

    Типы источников излучения, принципы их классификации. Источники излучения симметричные и несимметричные, газоразрядные, тепловые, с различным спектральным распределением энергии, на основе явления люминесценции. Оптические квантовые генераторы (лазеры).

    реферат , добавлен 19.11.2010

    Технико-эксплуатационные характеристики металлогалогенной лампы. Срок службы, безопасность и особенности эксплуатации. Структура рынка металлогалогенных ламп в РФ. Основные организации, которые занимаются продажей металлогалогенных ламп в г. Саранске.

    реферат , добавлен 27.12.2014

    Лампы общего назначения, их принцип действия, конструкция. Преимущества и недостатки ламп накаливания. Декоративные и иллюминационные лампы. Ограничения импорта, закупок и производства ламп накаливания. Утилизация отработавших люминесцентных ламп.

    Энергосберегающая лампа – это осветительный прибор, причём эффективнее, нежели обычная лампочка с нитью накала. Под определение попадает сегодня несколько типов устройств. Поговорим про разрядные и светодиодные лампы, их разновидности.

    Понятие энергосбережения для электрических ламп

    Заметим, что про высокую светоотдачу некоторых разновидностей ламп известно давно. С момента появления в 1938 году ртутных ламп низкого давления с приемлемой цветопередачей стало понятно, что за последним классом устройств будущее. Но теперь, когда вышли первые приборы на светодиодах, конкурентоспособность сравнительно тусклых и сложных разрядных ламп уже ставится под сомнение. Однако европейские стандарты делят технику не по признаку вложенных в неё технологий, а по мере энергосбережения.

    Рассмотрением вопроса занимаются правила № 874/2012, 12 июля 2012 года выпуска, в поддержку директивы Европейского парламента 2010/30/EU. В документе приводятся сведения о лампах, полезные или интересные читателям:

    1. Документ касается всех разновидностей бытовых ламп: с нитями накала, люминесцентных, разрядных, светодиодных. Три последних группы считаются вдобавок энергосберегающими.
    2. Для каждой лампочки указывается степень энергоэффективности цветной наклейкой, наподобие изображённых на фото. Указанная часть позволяет быстро понять, что это за лампочка, считается ли энергосберегающей.

    Коэффициент энергоэффективности различается для направленных и ненаправленных источников света. К примеру, правила Евросоюза доводят до покупателей информацию, представленную в виде таблицы на скрине. Из приведённых цифр понятно, что индекс энергоэффективности (IEE) для направленных источников света бывает выше и значительно больше единицы. Самыми лучшими признаны устройства класса А++, наименее эффективные – Е. В быту принято называть энергосберегающими лампы, для которых параметр укладывается в диапазон от А и выше.

    Узнаем, как подсчитывается индекс энергоэффективности. В ходе вычислений реальный световой поток источника света сравнивается с идеальным: I I E = Pcor / Pref. Где Pcor – номинальная мощность потребления, которую для устройств с внешними драйверами полагается корректировать согласно данным таблицы, представленной на рисунке. Для прочих устройств число берётся непосредственно, без изменений.

    Напоминаем, что драйвером лампы называют модуль для преобразования напряжения сети к нужному формату. К примеру, внутри цоколя Е27 часто стоит микросхема импульсного блока питания. Это драйвер, причём внутренний. Pref – это некое потребление эталона, своеобразной идеальной лампы. Вычисляется по формулам, представленным на рисунке, сообразно тому, больше световой поток 1300 люменов или меньше.

    Не бойтесь сложных выражений, авторы отредактировали скрины, снабдив уместными пояснениями. Вы увидите, что номинальная мощность эталона вычисляется из светового потока подопытной лампы по простым формулам. В таблице указано три варианта:

    • Ненаправленные источники света.
    • С углом ограничивающего конуса 90 градусов или более за исключением несущих на упаковке предупредительные символы о невозможности использования в акцентированном режиме и с нитями накала.
    • Все прочие направленные лампы.

    Спрашивается, как измерить световой поток. Во-первых, часто энергосберегающие лампы снабжаются упаковками, где прописано конкретное число, во-вторых, при помощи приборов значение получается в лабораторных условиях. Энергоэффективность выявляют по результатам тестов, сложностей не возникает. Собственно, всю информацию на английском языке нетрудно прочитать со скринов. Мы перевели на русский для лучшего восприятия.

    Лампы, относимые к энергосберегающим

    Сегодня под определение энергосберегающих подпадает два больших класса ламп:

    1. Светодиодные.
    2. Разрядные.

    Светодиодные энергосберегающие лампы

    Энергосберегающая лампа на светодиодах по всем признакам скоро вытеснит прочие разновидности. Судите сами: эффективность обычно выше А, срок службы находится в диапазоне люминесцентных приборов. Типовые значения – от 20 до 50 тыс. часов. Легко отличить светодиодную модель от прочих по двум признакам:

    1. Наклейка с показателем энергоэффективности поможет отличить грушевидные модели от ламп с нитями накала.
    2. По форме колбы легко провести разграничение с люминесцентными лампами, которые также считаются энергосберегающими.

    Срок жизни лампочки накала составляет 1000 часов. Если присмотритесь, на пачке (см. фото) увидите тождество, где одна светодиодная приравнена к тридцати обычным. Здесь как раз подразумевается срок жизни в 30000 часов. Этого хватит на 10 лет интенсивной работы. Причём это далеко не главная причина популярности светодиодных лампочек. Последние до 10 раз меньше потребляют электрической энергии на прежний суммарный световой поток в видимом диапазоне. Много экономится за счёт отсутствия нагрева. В результате инфракрасный спектр ощутимо беднее, впрочем, человеку он и не нужен.

    Нельзя сказать, что светодиодные лампочки намного лучше люминесцентных, но при одинаковой светимости, указанной на упаковке, первые создают визуально более благоприятное впечатление. Невооружённым глазом видна разница. Снижение затрат заметно уже после первого месяца эксплуатации. После внедрения в обиход светодиодных лампочек главным врагом семейного бюджета становится холодильник, на втором месте идут экономные персональные компьютеры. Делайте выводы: при покупке дюжины светодиодных лампочек по цене 180 рублей за штуку каждый месяц сберегается цена одной.

    Приблизительно через год в описанном выше случае уже уместно говорить о возврате средств, вложенных в иллюминацию жилища. Самое главное, что о вопросе экономии света допустимо забыть и спокойно включать свет при необходимости. Упомянем и о прочих преимуществах: требования к проводке и выключателям становятся намного более мягкими. Токи снижаются в 10 раз, сечение по меди возможно урезать до минимума, это уже прямая прибавка к бюджету на ближайший ремонт. Люстры допустимо приобретать менее стойкие к нагреву, до пожароопасной температуры эти лампочки не нагреваются. Аварийные случаи не в счёт.

    К единственному минусу светодиодных ламп авторы склонны отнести сложность ремонта. Крайне непросто добраться до драйвера, в результате невозможно отремонтировать прибор. У люминесцентных ламп цоколь просто снимается, что повышает шансы на возврат изделия к жизни.

    В семейство входят все лампы, где свечение образуется за счёт медленно тлеющего разряда. Первой успешной версией, вероятно, считаются трубки Гислера, бытовавшие ещё в XIX веке в развлекательных заведениях Европы. Упоминалось о факте ранее, в обзоре про люминесцентные лампы, сегодня остановимся на более практической части. На рубеже XX и XXI веков до 80% светового потока в развитых странах приходилось на разрядный тип приборов. Срок службы тоже немаленький – от 10 до 50 тыс. часов.

    В начале развития направления стало понятно, что ртутные лампы высокого давления и натриевые лампы низкого давления чрезвычайно хороши, но применять их для бытовых нужд не решались: слишком плохая цветопередача. Людская кожа попросту выглядела страшно в подобном соседстве. Напомним, что цветопередачей оптического источника называется степень схожести освещаемых им различных цветовых оттенков с истинным положением на спектральной шкале. Кстати, светодиодные лампы дают изумительные результаты.

    Для разрядных первый приемлемый эффект получен с люминесцентными лампами дневного света (ртутные низкого давления). Они появились в 1938 году, стало понятно, что устройства постепенно завоюют сегмент бытового применения. В 50-х годах XX века появились ртутные лампы высокого давления (дуговые ДРЛ). Потом последовали разрядные лампы высокой интенсивности, где впервые удалось преодолеть КПД в 100 лм/Вт. Это сильнее увеличило привлекательность приборов для обывателя. Спектр излучения подбирается наполнением колбы (газ, пар, их смеси) либо условиями горения дуги.

    Широкое распространение получили люминесцентные разрядные лампы, где спектр получается за счёт облучения ультрафиолетом специального вещества (люминофора). Возникла и немалая путаница. К примеру, к разрядным часто причисляют и галогенные лампы. Но это далеко не всегда правильно. К примеру, в кварцевых нагревателях применяются нити накала, дуга там отсутствует. А галогениды металлов служат иным целям: испаряющийся со спирали вольфрам немедленно вступает в соединение, которое не осаждается на стеклянной колбе. В результате возвращения молекулы на поверхность горячей нити (за счёт случайных процессов) металл восстанавливается. Так значительно возрастает срок службы.

    Галогениды часто используются и в разрядных лампах. Причём для аналогичных целей. Ключевым признаком металлогалогенных разрядных ламп (появились в 60-х годах XX века) считается горящая дуга. В последнем случае галогениды (йод, бром, хлор) играют дополнительную роль: изменяют спектр свечения, создают нужную плотность металлов в объёме газов и паров. В результате возникают уникальные свойства источников света, невозможные в других условиях. Известно третье свойство, не настолько очевидное: отдельные металлы с привлекательным спектром излучения при нагреве кварцевой колбы до 300 градусов Цельсия ведут себя агрессивно. Прежде всего щелочные, кадмий, цинк. Одновременно их галогениды намного более инертны, разрушения кварцевой колбы уже не происходит.

    Особенно замечательный эффект отмечается при смешивании нескольких типов веществ. К примеру, металлы I и III группы таблицы Менделеева дают отдельные спектральные полосы в диапазоне:

    • Натрий – 589 нм (близко к оранжевому).
    • Таллий – 535 нм (зелёный).
    • Индий – 410 и 435 нм (интенсивно фиолетовый).

    Скандий, лантан, иттрий и редкоземельные металлы дают спектр из множества полос, заполняющих видимый спектр. Часть читателей спрашивает – зачем это, собственно, нужно? Дело здесь не только в разнообразной цветопередаче. Важна цветовая температура лампочки. На фото, к примеру, красуется светодиодная на 4500 К. Это холодный оттенок, но до дневного света ей далеко. Рубеж начинается с 6000 К.

    Подбирая нужным образом цветовую температуру, удаётся задавать циркадные ритмы человеческой психики. Явление означает улучшение работоспособности днём, хороший сон в ночной период, успокоение или нагнетание напряжённости. Ниже авторы привели таблицу, где показаны индексы цветопередачи и прочие параметры для металлогалогенных ламп с различным заполнением. Быстро отыскать подобное изделие на прилавке поможет кодировка ДРИ (и другие похожие).

    Позднее расскажем про натриевые лампы и керамические горелки, индексы цветопередачи и влияние температуры на психику. Любое знание ограничено, и лишь незнание не имеет границ.

    Искусственные источники освещения, использующие для выработки световых волн электрический разряд газовой среды в парах ртути, называют газоразрядными ртутными лампами.

    Газ, закачанный в баллон, может находиться под низким, средним или высоким давлением. Низкое давление применяется в конструкциях ламп:

      линейных люминесцентных;

      компактных энергосберегающих:

      бактерицидных;

      кварцевых.

    Высокое давление используется в лампах:

      дуговой ртутной люминофорной (ДРЛ);

      металлогенной ртутной с излучающими добавками (ДРИ) галогенидов металлов;

      дуговой натриевой трубчатой (ДНаТ);

      дуговой натриевой зеркальной (ДНаЗ).

    Их устанавливают в тех местах, где необходимо освещать большие территории с малыми затратами электроэнергии.

    Лампа ДРЛ

    Особенности конструкции

    Устройство лампы, использующей четыре электрода, схематично показано на картинке.

    Ее цоколь, как и у обычных моделей, служит для подключения к контактам при вкручивании в патрон. Стеклянная колба герметично защищает все внутренние элементы от внешних воздействий. В ней закачан азот и размещены:

      кварцевая горелка;

      электрические проводники от контактов цоколя;

      два токоограничивающих сопротивления, вмонтированные в цепь дополнительных электродов

      слой люминофора.

    Горелка выполнена в форме герметичной трубки из кварцевого стекла с закачанным аргоном, в которую помещены:

      две пары электродов - основной и дополнительный, расположенные на противоположных концах колбы;

      небольшая капелька ртути.

    Источником света ДРЛ является разряд электрической дуги в среде аргона, протекающий между электродами в кварцевой трубке. Он возникает под действием приложенного к лампе напряжения в два этапа:

    1. первоначально между близкорасположенными основным и зажигающим электродами начинается тлеющий разряд за счет движения свободных электронов и положительно заряженных ионов;

    2. образование внутри полости горелки большого количества носителей зарядов приводит к быстрому пробою среды азота и образованию дуги через основные электроды.

    Стабилизация пускового режима (электрического тока дуги и света) требует времени порядка 10-15 минут. В этот промежуток ДРЛ создает нагрузки, значительно превышающие токи номинального режима. Для их ограничения применяется .

    Излучение дуги в парах ртути имеет голубой и фиолетовый оттенок и сопровождается мощным ультрафиолетовым излучением. Оно проходит через люминофор, смешивается с образуемым им спектром и создает яркий свет, приближенный к белому оттенку.

    ДРЛ чувствительна к качеству питающего напряжения, а при его снижении до 180 вольт тухнет и не зажигается.

    Во время создается высокая температура, передающаяся всей конструкции. Она влияет на качество контактов в патроне и вызывает нагрев подключенных проводов, которые из-за этого используют только с термостойкой изоляцией.

    При работе лампы давление газов в горелке сильно увеличивается и осложняет условия для пробоя среды, что требует повышения приложенного напряжения. Если питание отключить и подать, то сразу лампа не запустится: ей надо остыть.

    Схема подключения лампы типа ДРЛ

    Четырехэлектродная ртутная лампа включается в работу через дроссель и .

    Плавкая вставка защищает схему от возможных коротких замыканий, а дроссель ограничивает ток, проходящий через среду кварцевой трубки. Индуктивное сопротивление дросселя подбирается по мощности светильника. Включение лампы под напряжение без дросселя приводит к ее быстрому перегоранию.

    Конденсатор, включенный в схему, компенсирует реактивную составляющую, вносимую индуктивностью.

    Лампа ДРИ

    Особенности конструкции

    Внутреннее устройство лампы ДРИ очень похоже на то, которое используется У ДРЛ.

    Но в ее горелке введена определенная доза добавок из гапогенидов металлов индия, натрия, таллия или некоторых других. Они позволяют увеличить выделение света до 70-95 лм/Вт и более с хорошей цветностью.

    Колба выполняется в форме цилиндра или эллипса, показанного на рисунке ниже.

    Материалом горелки может быть кварцевое стекло или керамика, которая обладает лучшими эксплуатационными свойствами: меньшее затемнение и больший срок службы.

    Форма горелки в виде шара, используемая в современных конструкциях, повышает светоотдачу и яркость источника.

    Принцип действия

    Основные процессы, происходящие при выработке света ламп ДРИ и ДРЛ совпадают. Отличие состоит в схеме зажигания. ДРИ не может запуститься в работу от приложенного напряжения сети. Ей этой величины недостаточно.

    Для создания дугового разряда внутри горелки необходимо к межэлектродному пространству приложить высоковольтный импульс. Его образование возложено на ИЗУ - импульсное зажигающее устройство.

    Как работает ИЗУ

    Принцип действия устройства создания высоковольтного импульса условно можно представить упрощенной принципиальной схемой.

    Рабочее напряжения питания подводится на вход схемы. В цепочке диода D, резистора R и конденсатора C создается зарядный ток емкости. По окончании заряда через конденсатор выдается импульс тока сквозь открывшийся тиристорный ключ в обмотку подключенного трансформатора Т.

    В повышающей напряжение выходной обмотке трансформатора создается высоковольтный импульс величиной до 2-5 кВ. Он поступает на контакты лампы и создает дуговой разряд газовой среды, обеспечивающий свечение.

    Схемы подключения лампы типа ДРИ

    Устройства ИЗУ выпускаются для газоразрядных ламп двух модификаций: с двумя или тремя выводами. Для каждого из них создается своя схема подключения. Она приводится прямо на корпусе блока.

    При использовании двухконтактного устройства фаза сети через дроссель подключается к центральному контакту цоколя лампы и одновременно на соответствующий вывод ИЗУ.

    Нулевой провод подводится на боковой контакт цоколя и свой вывод ИЗУ.

    У трехконтактного устройства схема подключения нуля остается такой же, а подвод фазы после дросселя изменяется. Она подключается через два оставшихся вывода на ИЗУ, как показано на картинке ниже: вход на устройство осуществляется через клемму «В», а вывод на центральный контакт цоколя через - «Lp».

    Таким образом, в состав пускорегулирующей аппаратуры (ПРА) для ртутных ламп с излучающими добавками входят в обязательном порядке:

      дроссель;

      импульсное зарядное устройство.

    Компенсирующий величину реактивной мощности конденсатор может входить в состав ПРА. Его включение определяет общее снижение потребления энергии осветительным устройством и продление срока эксплуатации лампы при правильно подобранной величине емкости.

    Ориентировочно ее значение в 35 мкФ соответствует лампам с мощностью 250 Вт, а 45 - 400 Вт. При завышенной емкости возникает резонанс в схеме, который проявляется «миганием» света лампы.

    Наличие в работающей лампе импульсов высокого напряжения определяет использование в схеме подключения исключительно высоковольтных проводов минимальной длины между ПРА и лампой, не более 1-1,5 м.

    Лампа ДРИЗ

    Это разновидность описанной выше лампы ДРИ, внутри колбы которой частично нанесено зеркальное покрытие для отражения света, которое формирует направленный поток лучей. Он позволяет фокусировать излучение на освещаемый объект и снижать световые потери, возникающие из-за переотражений.

    Лампа ДНаТ

    Особенности конструкции

    Внутри колбы этой газоразрядной лампы вместо ртути используются пары натрия, расположенные в среде инертных газов: неона, ксенона или других, либо их смесей. По этой причине их называют «натриевыми».

    За счет такой модификации устройства конструкторам удалось придать им наибольшую эффективность работы, которая доходит до 150 лм/Вт.

    Принцип действия ДНаТ и ДРИ один и тот же. Поэтому схемы подключения их одинаковы и при соответствии характеристик ПРА параметрам ламп их можно использовать для зажигания дуги в обеих конструкциях.

    Однако производители металл галогенных и натриевых ламп выпускают пускорегулирующие устройства под конкретные виды своих изделий и поставляют их в едином корпусе. Эти ПРА полностью налажены и готовы к работе.

    Схемы подключения ламп типа ДНаТ

    В отдельных случаях конструкции ПРА для ДНаТ могут иметь отличия от представленных выше схем запуска ДРИ и выполняться по одной из трех нижеприведенных схем.

    В первом случае ИЗУ включено параллельно контактам лампы. После зажигания дуги внутри горелки рабочий ток не течет через лампу (см принципиальную схему ИЗУ), что экономит потребление электричества. При этом дроссель испытывает воздействие высоковольтных импульсов. Поэтому он создается с усиленной изоляцией для защиты от зажигающих импульсов.

    Из-за этого схема параллельного включения используется с лампами маленькой мощности и импульсом зажигания до двух киловольт.

    Во второй схеме применяется ИЗУ, работающее без импульсного трансформатора, а высоковольтные импульсы вырабатывает дроссель специальной конструкции, имеющий отвод для подключения к контакту лампы. Изоляция обмоток этого дросселя также усиливается: она подвергается воздействию высоковольтного напряжения.

    В третьем случае используется метод последовательного подключения дросселя, ИЗУ и контакта лампы. Здесь высоковольтный импульс от ИЗУ не поступает на дроссель, а изоляция его обмоток не требует усиления.

    Недостаток этой схемы в том, что ИЗУ потребляет повышенный ток, за счет чего происходит его дополнительный нагрев. Это обуславливает необходимость увеличения габаритов конструкции, которые превышают размеры предшествующих схем.

    Этот третий вариант конструкции наиболее часто используется для работы ламп ДНаТ.

    Во всех схемах может быть использована подключением конденсатора так, как показано в схемах подключения ламп ДРИ.

    Перечисленные схемы включения ламп высокого давления, использующих газовый разряд для свечения, обладают рядом недостатков:

      заниженный ресурс свечения;

      зависимость от качества питающего напряжения;

      стробоскопический эффект;

      шум работающего дросселя и ПРА;

      повышенное потребление электричества.

    Большая часть этих недостатков устраняется применением электронных пусковых аппаратов (ЭПРА).

    Они позволяют не только экономить до 30% электроэнергии, но и обладают возможностью плавного регулирования освещенности. Однако, стоимость таких устройств пока еще довольно высокая.

    Освещение всегда и везде является главным атрибутом, без которого сложно представить современный мир. При этом мало кто задумывается о том, какие источники света существуют на сегодняшний день, а ведь каждый вид ламп создает свой световой поток.
    Среди всего разнообразия лампочек, которые можно вкрутить в осветительный прибор, особое место занимают газоразрядные источники света.

    Газоразрядные лампы на сегодняшний день встречаются очень часто и в самых разнообразных сферах человеческой деятельности, начиная от подсветки авто и заканчивая домашним освещением. Поэтому не лишним будет знать, что представляет собой это изделие, и как с ним следует обращаться. Обо всем, что нужно знать о газоразрядных лампочках, расскажет сегодняшняя статья.

    Обзор

    Газоразрядные лампы – современный источник света, который излучает световую энергию в видимом для человеческого глаза диапазоне. В своей основе газоразрядная лампочка имеет стеклянную колбу, в которую под давлением закачивается газ или пары металла. Кроме этого в строении изделия имеются электроды, которые расположены по концам стеклянной колбы.

    Строение лампы

    Принцип работы лампочки основывается именно на таком строении, так как вся система активируется при прохождении через колбу электрического разряда. В центральной части колбы располагается основной электрод. Под ним установлен токоограничительный резистор. Благодаря такой конструкции в колбе, при прохождении через нее электрического разряда, формируется свечение.
    Помимо колбы и электродов, изделие содержит еще и цоколь, благодаря которому может вкручиваться в различные светильники с целью создания домашнего или уличного типа освещения.
    Обратите внимание! Наиболее часто газоразрядные лампочки встречаются именно в системе уличного типа освещения. Их часто вкручивают в фонари, в авто и т.д.
    Газоразрядные лампы представляют собой специальные устройства, которые способны создавать свечение с помощью электрического разряда.

    Как работает лампочка

    С конструкционными особенностями, которые имеют газоразрядные лампы, мы разобрались в предыдущем разделе. Также вскользь коснулись и того, какой принцип работы имеет это изделие. Теперь рассмотрим принцип работы более детально, чтобы понять, каким же именно образом формирует освещение подобный тип источника света.

    Принцип работы лампы

    Газоразрядная лампа – особые источники освещения, которые способны генерировать свет вследствие создания внутри своей колбы электрического разряда. Принцип работы такой лампы основывается на ионизации газа, который находится внутри стеклянной колбы.
    Принцип, по которому работает газоразрядная лампочка, предполагает, что внутри колбы под давлением закачивается определенный газ.
    Чаще всего для освещения домов, улиц и авто используются благородные (инертные) газы:

    • неон;
    • криптон;
    • аргон;
    • ксенон;
    • смесь газов в различных пропорциях.

    Ртутная модель

    Очень часто для освещения домов, авто и улиц используются такие источники света, в состав которых входят дополнительные газы. Например, в состав газовой смеси может входить натрий (натриевые модели) или ртуть (ртутные модели).
    Обратите внимание! Ртутные лампочки сегодня имеют большее распространение, чем натриевые. Их часто вставляют в фонари при создании уличного типа освещения. Также они применяются для подсветки домов изнутри.

    Ртутные и натриевые модели входят в группу металлогалогенных источников света.
    Когда на газоразрядную лампочку подается питание, в трубке начинает генерироваться электрическое поле. Оно приводит к ионизации газа и свободных электронов. В результате этого электроны, которые вращаются на верхних уровнях атомов, начинают сталкиваться с другими электронами атомов металла (специальных добавок в газовые смеси). В результате столкновения происходит переход электронов на внешние орбитали. В конечном итоге происходит высвобождение энергии и фотонов. Таким образом и формируется свечение лампочки.

    Обратите внимание! Освещение, которое получается в результате работы такой лампочки, может быть различным: от ультрафиолетового до инфракрасного видимого излучения.

    Вариант свечения лампы

    Чтобы добиться различного цветового свечения, на колбу газоразрядных ламп наносят специальное люминесцентное покрытие. Им покрывают внутреннюю сторону колбы. С помощью такого покрытия происходит преобразование ультрафиолетового излучения в видимый свет.

    Виды газоразрядных ламп

    Натриевые лампы высокого давления

    Газоразрядная лампа, которая используется для создания уличного освещения или подсветки авто, может иметь разнообразное строение, которое не отходит от принципов работы. На этом основывается классификация таких источников света.
    На сегодняшний день газоразрядные источники света бывают следующих видов:

    • газоразрядные лампы высокого давления. Они в свою очередь могут подразделяться на ДРЛ (ртутные модели), ДРИ, ДНат и ДКсТ. Их особенностью является отсутствие необходимости в наличии пускорегулирующего аппарата. Такие модели можно встретить в качестве подсветки улиц (их вставляют в фонари системы уличного освещения), авто, домов и наружной рекламы;

    Обратите внимание! Лампы газоразрядного типа высокого давления являются самыми распространенными (особенно ртутные модели). Очень часто с их помощью (натриевые и ртутные модели) формируют подсветку именно улиц. А вот дома такие источники света встречаются достаточно редко.

    Лампы низкого давления

    • газоразрядные лампы низкого давления. Они подразделяются на ЛЛ (различные модели) и КЛЛ. Такие лампочки сегодня с успехом вытесняют устаревшие лампы накаливания. Они применяются для создания подсветки дома, улиц (в составе системы уличного освещения) и даже авто.

    Обратите внимание! Самые распространенные лампы низкого давления – люминесцентные. Такие модели часто применяются для освещения улиц в составе системы уличного освещения. Особенно часто такие лампочки вкручивают в фонари.

    Свое широкое распространение газоразрядные лампочки получили из-за наличия у них ряда достоинств.

    Достоинства и недостатки

    Уличная подсветка

    К основным достоинствам подобных лампочек относятся следующие качества:

    • высокая светоотдача (на уровне 55 лм/Вт). Она остается достаточно высокой, даже если фонари, в которые была установлена лампочка, имеют непрозрачный плафон;
    • длительный период службы. Средняя производительность газоразрядных лампочек составляет примерно 10 тыс. часов. Поэтому такие изделия часто используют для подсветки улиц и авто;
    • высокая устойчивость (например, ртутные модели) к плохим климатическим условиям. В результате они часто используются для уличного освещения. Они могут вкручиваться в фонари и другие типы светильников. Но если для региона характерны заморозки, то использовать ртутные модели для совещания улиц, даже если они вкручены в специальные фонари и фары авто, нельзя;
    • доступная стоимость;
    • экономичность, которая позволяет обходиться без затрат на дорогие комплектующие к осветительной аппаратуре.

    Вместе с тем, здесь имеются и свои недостатки:

    • лампы имеют плохую цветопередачу. Это связано с ограниченным спектром лучей. Таким образом рассмотреть в созданном лампочкой свете цвет предмета будет несколько затруднительно. В связи с этим, газоразрядные лампочки зачастую используются для освещения улиц и монтируются в фары авто;
    • может работать только при наличии переменного тока;
    • включение происходит с помощью балластного дросселя;
    • имеется период, необходимый для разогрева источника света;
    • опасность использования, так как в состав газовой смеси могут входить пары ртути;
    • такие лампы обладают повышенной пульсацией испускаемого светового потока.

    Отдельно следует отметить, что установка данной продукции осуществляется по стандартной схеме, как и лампы накаливания.

    Область применения

    Конструкционные особенности, которыми обладают газоразрядные лампочки, обеспечили им обширную область применении.
    Сегодня подобная продукция применяется для:

    • создания уличного освещения в городской и сельской местности. Отлично такие лампы смотрятся, если они вкручиваются в фонари для создания качественной подсветки парков и скверов;
    • освещения производственных сооружений, магазинов, торговых площадок, офисов, а также общественных помещений;
    • с помощью газоразрядных источников света, которые вкручены в фонари, можно оформить уличную декоративную подсветку зданий или пешеходных дорожек;
    • подсветки наружной рекламы и рекламных щитов;
    • высокохудожественного освещения эстрад и кинотеатров. Но здесь необходимо применение специального оборудования.

    Освещение в авто

    Отдельно стоит отметить, что источники света газоразрядного типа сегодня очень часто используются для освещения транспортных средств. Здесь зачастую применяются грл с высокой интенсивностью (например, неоновые). Многие авто имеют в своей комплектации фары, которые заполнены газообразной смесью из металлогалоидных солей и ксенона. Такие фары можно встретить в таких марках, как БМВ, Тойота или Опель.
    Иногда подобные лампочки можно встретить и в подсветке дома. Но здесь необходимо обязательно учитывать специфику источников света, чтобы их недостатки можно было минимизировать.
    Но в целом область применения данной продукции достаточно обширна и разнообразна.

    Заключение

    Газоразрядные лампочки представляют собой современный и довольно востребованный источник света, который обладает как своими недостатками, так и преимуществами. Для создания уличного освещения такие источники света подходят лучше всего, а вот в домашних условиях они во многом уступают более безопасным лампочкам.


    Выбираем светильники над рабочим столом для кухни



Загрузка...