electricschool.ru

Аллотропные модификации. Что такое аллотропия? Аллотропия углерода, химия

Содержание статьи

АЛЛОТРОПИЯ, существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O 2 и озон O 3 ; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще всего аллотропия связана с образованием кристаллов различных модификаций. Углерод существует в двух четко различающихся кристаллических аллотропных формах: в виде алмаза и графита. Раньше полагали, что т.н. аморфные формы углерода, древесный уголь и сажа, – тоже его аллотропные модификации, но оказалось, что они имеют такое же кристаллическое строение, что и графит. Сера встречается в двух кристаллических модификациях: ромбической (a -S) и моноклинной (b -S); известны по крайней мере три ее некристаллические формы: l -S, m -S и фиолетовая. Для фосфора хорошо изучены белая и красная модификации, описан также черный фосфор; при температуре ниже –77° С существует еще одна разновидность белого фосфора. Обнаружены аллотропные модификации As, Sn, Sb, Se, а при высоких температурах – железа и многих других элементов.

Энантиотропные и монотропные формы.

Кристаллические модификации химического элемента могут переходить одна в другую по-разному, что можно проиллюстрировать на примерах серы и фосфора. При обычной температуре стабильной является ромбическая модификация серы, которая при нагревании до 95,6° С и давлении 1 атм переходит в моноклинную форму. Последняя при охлаждении ниже 95,6° С вновь переходит в ромбическую форму. Таким образом, переход одной формы серы в другую происходит при одной и той же температуре, и сами формы называются энантиотропными. Другая картина наблюдается для фосфора. Белая его форма может превращаться в красную почти при любой температуре. При температурах ниже 200° С процесс протекает очень медленно, но его можно ускорить с помощью катализатора, например иода. Обратный же переход красного фосфора в белый невозможен без образования промежуточной газовой фазы. Красная форма стабильна во всем диапазоне температур, где она находится в твердом состоянии, тогда как белая нестабильна при любой температуре (метастабильна). Переход из нестабильной формы в стабильную в принципе возможен при любой температуре, а обратный – нет, т.е. определенная точка перехода отсутствует. Здесь мы имеем дело с монотропными модификациями элемента. Две известные модификации олова энантиотропны. Модификации углерода – графит и алмаз – монотропны, причем стабильной является форма графита. Красная и белая формы фосфора монотропны, а две белые его модификации энантиотропны, температура перехода равна –77° С при давлении 1 атм.

Аллотропией , или полиморфизмом , называется способность металлов в твердом состоянии иметь различное кристаллическое строение, а следовательно, и свойства при различных температурах.

Процесс перехода из одной кристаллической формы в другую называется аллотропическим (полиморфным) превращением. Алло­тропические формы обозначают начальными буквами греческого алфавита: альфа α, бета β, гамма γ, дельта δ и т. д., начиная с той формы, которая существует при более низкой температуре.

На рис. 14 приведена кривая охлаждения железа, характери­зующая аллотропические превращения. Железо имеет объемно центрированную кубическую решетку до температуры 911 °С и в интервале 1392–1539 °С (Fe α), а от темпера­туры 911 до 1392 °С имеет гранецентрированную куби­ческую решетку Fe γ . Высоко­температурная α-мо­ди­фи­­кация (от 1392 до 1539 °С) иногда обозначается Feδ (δ – железо). При температуре 768 °С происходит изме­нение магнит­ных свойств: ниже 768 °С железо магнитно, выше 768 °С железо немагнитно.

Характерным примером является аллотропия олова. При температуре ниже 18 °С устойчива модификация α-олова (Sn α), называемая серым оловом, а выше 18 °С – мо­дификация β-олова (Sn β), на­зываемая белым оловом.

Решетка белого олова более компактна, чем серого олова, и превращение Sn β Sn α идет со значительным увеличением объема. Поэтому при образовании на белом олове бугорка серого олова последнее, вследствие больших объемных изменений, рас­сыпается в порошок. Это явление получило название «оловянной чумы», превращение необратимо.

В процессе аллотропического превращения выделяется скрытая теплота кристаллизации (если превращение идет при охлаждении); на кривой охлаждения аллотропическое превращение отмечается горизонтальным участком. Аллотропические превращения имеют многие металлы, например, железо, марганец, олово, титан и др.

Максимального значения скорость аллотропического превраще­ния Sn β Sn α достигает при переохлаждении примерно до темпе­ратуры – 30 °С. Поэтому опасность «оловянной чумы» особенно велика при хранении олова в зимнее время в холодном помещении.

2.3. Основные сведения о сплавах

Должны знать, что металлическим сплавом называется вещество, состоящее из двух или более элементов (металлов или металлов с металлоидами), обладающее металлическими свойствами. Обычным способом при­готовления сплавов является сплавление, но иногда применяют спекание, электролиз или возгонку.

В большинстве случаев входящие в сплав элементы в жидком состоянии полностью растворимы друг в друге, т. е. представляют собой жидкий раствор, в котором атомы различных элементов более или менее равномерно перемешаны друг с другом (рис. 15, а). В твердом виде сплавы способны образовывать твердые растворы, химические соединения и механические смеси (рис. 15, б, в, г).

Твердый раствор. Во многих сплавах при переходе в твердое состояние (при кристаллизации) сохраняется однородность рас­пределения атомов различных элементов и, следовательно, сохра­няется и растворимость. Образовавшийся в этом случае кристалл (зерно) называется твердым раствором.

Микроструктура твердого раствора в условиях равновесия представляет собой совершенно однородные и одинаковые по составу зерна и похожа на структуру чистого металла (рис. 15, б). Твер­дый раствор, как и чистый металл, имеет одну кристаллическую решетку. Различие состоит только в том, что в кристаллической решетке чистого металла все узлы заняты атомами одного эле­мента, а в твердом растворе - атомами различных элементов, образующих этот твердый раствор.

Растворимость в твердом состоянии может быть неограничен­ной и ограниченной. Растворимость твердого раствора, получен­ного при любом количественном соотношении элементов, называется неограниченной. Растворимость твердого раствора, полученного при определенном количественном соотношении элементов, назы­вается ограниченной.

По расположению атомов в кристаллической решетке различают твердые растворы замещения и твердые растворы внедрения.

В твердом растворе замещения атомы растворенного элемента занимают узлы атомов элемента растворителя, т. е. расположены в узлах общей кристаллической решетки (рис. 16, а ).

В твердом растворе внедрения атомы растворенного элемента располагаются внутри кристаллической решетки элемента раство­рителя между атомами металла-растворителя (рис. 16, б).

При образовании твердых растворов свойства сплавов изменяются плавно и отличаются от свойств элементов, из которых они состоят.

Химическое соединение. Особый характер металлической связи в спла­­вах приводит к образованию особого вида химических соеди­нений. В отличие от обычных химических соединений многие металлические соединения имеют переменный состав, который может изменяться в широких пределах. Характерной особенностью металлического химического соединения является обра­зование кристаллической решетки (см. рис. 13, б ), отличной от решеток образующих элементов, и существенное изменение всех свойств.

Иногда в металлических сплавах образуются также хи­мические соединения с нормаль­ной валентностью, например, оксиды, сульфиды, а также соедине­ния металлов с резко отличным электронным строением атомов (Mg 2 Sn, Mg 2 Pb и др.).

Механическая смесь. Если элементы, входящие в состав сплава, не растворяются друг в друге в твердом состоянии и не вступают в химическую реакцию с образованием соединения, то при этих условиях из атомов каждого элемента образуется отдельная кри­сталлическая решетка, и кристаллы (зерна) элементов, входящие в сплав, образуют механическую смесь (рис. 15,г ). При обра­зовании механической смеси, когда каждый элемент кристаллизу­ется самостоятельно, свойства сплава получаются средними между свойствами элементов, которые его образуют.

Механические смеси образуются также в случаях, когда эле­менты обладают ограниченной растворимостью, а также когда образуют химическое соединение. Если в сплаве количество эле­ментов превышает их предельную растворимость, то возникает механическая смесь двух насыщенных твердых растворов. При наличии в сплаве химического соединения образуется механиче­ская смесь из зерен твердого раствора и химического соедине­ния и т. д.

При изучении процессов, происходящих в металлах и сплавах при их превращениях, и описании их строения в металло­ведении пользуются следующими понятиями: «фаза», «структура», «система», «ком­понент».

Фазой называются однородные составные части системы (ме­талла или сплава), имеющие одинаковый состав, кристаллическое строение, свойства и одинаковое агрегатное состояние.

Например, жидкий металл является однофазной си­стемой; смесь жидкого металла и твердых кристалли­ков – двухфазной системой, так как свойства жидкого металла значительно отличаются от свойств твердых кристалликов. Фазами могут быть отдельные металлы, их химические соединения, а также растворы на основе металлов.

Под структурой понимают форму, размеры и характер взаимного расположения соответствующих фаз в металлах и сплавах.

Структурными составляющими сплава называются обособленные части сплава, имеющие оди­наковое строение с присущими им характерными осо­бенностями. Структурные составляющие могут состоять из одной, двух или более фаз. Одна из важнейших задач металловедения – опре­деление взаимосвязи между составом, структурой и свойствами.

Системой называется совокупность фаз, находящихся в равно­весии при определенных внешних условиях (температура, давле­ние). Система, может быть, простой, если она состоит из одного элемента, и сложной, если она состоит из нескольких эле­ментов.

Компонентами называют вещества, образующие систему. Ком­понентами могут быть элементы (металлы и неметаллы) или устой­чивые химические соединения.

Применительно к металлографии аллотропия - это существование одного вещества в нескольких кристаллических формах (аллотропия формы). Явление аллотропии обусловлено способом размещения атомов или молекул в кристаллической решётке.

Различные кристаллические формы одного вещества называются аллотропическими модификациями , которые обозначаются греческими буквами:  и т.д. Аллотропическая форма, существующая при самой низкой температуре, обозначается  потом следует модификация  и т.д.

Явление аллотропии изучено достаточно хорошо. А вот продемонстрировать его не всегда удается. Причина тому - существование аллотропических форм существенно выше или ниже комнатной температуры, когда наличие той или иной формы можно определить только в лабораторных условиях, а зафиксировать структуру - и того реже.
Наиболее известные примеры аллотропных веществ - это железо, углерод, олово.Об аллотропии железа пишут много. Аллотропические формы железа (α- ,  - и  -) различаются типом кристаллической решетки (рис. 1): объемноцентрированная у α-модификации и гранецентрированная у  -модификации.  -железо - это высокотемпературная модификация, также имеющая объемноцентрированную кубическую решетку. Для практических целей она существенного значения не имеет, поэтому о ней упоминают редко. Она оказывает определенное влияние на строение некоторых марок литых сталей и их последующую термическую обработку. Потом мы напишем немного и об этом. Строго говоря, выделяют еще  - модификацию. Это немагнитное α - железо, которое существует в интервале 911-768 о С.

Рисунок 1. Кривая охлаждения железа

Поскольку температуры перехода одной аллотропической формы в другую лежат в области высоких температур, понятно, что существование  - железа при комнатной температуре возможно с помощью некоторых ухищрений. Фактически, мы видим при комнатной температуре не непосредственно  - железо , а твердый раствор легирующих элементов в  - железе - аустенит. Почему? Потому что некоторые легирующие элементы снижают температуру существования  - железа до комнатной и ниже. В сущности, уже углерод при содержании 0,8% снижает температуру перехода Fe   Fe  почти на 200 градусов - с 911 о С до 727 о С. Ну, а если добавлять еще легирующие….. . Дело удается, и мы имеем структуру аустенита при комнатной температуре. Ну, а α-железо существует при комнатной температуре и чтобы увидеть его, дополнительного легирования не надо. В металловедении мы чаще всего имеем дело не с чистым α-железом, а с твердым раствором на его основе- ферритом.
Существование аллотропии железа позволило создать современные технологии термической обработки стали.
Здесь нас интересует структура, присущая разным аллотропическим формам. Структуры α-железа (феррит) и  - железа (аустенит) надежно различаются микроскопически (рис. 2). Зерна феррита имеют округлую или полиэдрическую форму (рис.2а), аустенита - угловатую, многоугольную. В аустените, как правило, чаще наблюдаются двойники (рис.2б). Из представленных на рис.2 фотографий видно, что феррит не очень устойчив химически - зерна феррита окрасились при травлении. Аустенит более устойчив. Кстати - нержавеющие стали имеют аустенитную структуру.

Рисунок 2. Структура феррита (а) и аустенита (б).

Еще большим разнообразием форм обладает углерод. Долгое время считалось, что он обладает двумя аллотропными модификациями, графитом и алмазом, но с середины двадцатого века разнообразие различных модификаций стало стремительно увеличиваться. В шестидесятых годах ХХ века открыт карбин, в 1985 году были открыты различные фуллерены, а не-сколько позже - нанотрубки, нанопена и др. Примерно в это же время были обнаружены фрагменты графита атомарной толщины, которые предложили назвать графеном. Его можно представить в виде атомарного слоя графита. С начала 2000-годов графен стал одним из самых интенсивно ис-следуемых физических объектов. Аллотропия углерода - это также аллотропия формы. В справочной литературе выделяют много аллотропных форм углерода, но здесь приведены только две из них - графит и алмаз . Тем более, что для целей материаловедения это как-то ближе. В особенности графит, который доступен в свободном виде по банальным карандашам, а также алмаз, прекрасный и не всегда доступный… Когда-то предполагали, что углерод в виде алмаза может присутствовать в сталях и чугунах, но не нашли. Придется удовольствоваться графитом.
Кристаллические решетки графита и алмаза различаются существенно. У графита - гексагональная, у алмаза - гранецентрированная кубическая.
Микроскопически графит прекрасно наблюдается в чугуне, особенно без травления на фоне блестящей металлической матрицы, и может принимать различные формы - глобулярную, пластинчатую, хлопьевидную, вермикулярную. Форма графита зависит от состава и способа получения чугуна. Если повезет, то можно увидеть сферокристалл графита (рис. 3, а). Ну, а если не повезет, то «куском» (рис.3, б). В принципе, структура у такого куска будет принципиально такая же, как и у компактного графита различных марок (рис. 4,5) - кристаллы, хаотично ориентированные. Для рассмотрения такого графита в микроскопе также желательно сделать шлиф. В данном случае образцы были пришлифованы на шкурке и стекловолокне.

Рисунок 3. Графит в высокопрочном чугуне

Рисунок 4. Структура электродного графита.

Рисунок 5. Образцы и

Современные технологии позволяют получать графит в различных «ипостасях», например графитовая бумага. (Бумага - потому что состоит из тонких слоев. Но не для письма!)


а
б в

Рисунок 6. Образец графитовой бумаги (а) и его поверхность при различных увеличениях (б,в).

Существует графитовое (углеродное) волокно (рис. 7,а), которое является армирующим компонентом композиционных материалов (рис.7,б). Металлография позволяет рассмотреть углеродное волокно - армирующий компонент алюминиевого сплава (рис. 8).

Рисунок 8. Углеродное волокно в составе алюминиевого сплава

Другой популярной в описаниях аллотропной формой углерода является алмаз. Под микроскопом грани ювелирного алмаза можно рассмотреть в темном поле (рис. 9). Цвет здесь определяется настройками видеокамеры.

Рисунок 10. Алмазный порошок: а - светлое поле, б - темное поле; х200.

(этот материал будет продолжен)

Изучение простых веществ и их свойств чрезвычайно важно для неорганической химии и закладывает основу для ее изучения. Кардинальная особенность простых веществ заключается в том, что при рассмотрении их свойств не нужно учитывать изменения их состава, поскольку он всегда один и тот же. Но и у простых веществ необходимо уделить особое внимание явлению аллотропии. Это позволит выявлять зависимость свойств веществ от их химического строения.

Аллотропия (от греческого «tropos» — признак) — это процесс, при котором один химический элемент может трансформироваться в два или больше простых веществ. К примеру, атомы кислорода могут преобразоваться в два других различных вещества – кислород и озон , а сера – кристаллическую и пластическую серу. Вещества, которые образовались из атомов одно химического элемента, называют аллотропными модификациями этого элемента. Аллотропия вызвана разнящимся набором молекул в простом веществе или разным местонахождением частиц в кристаллической решётке этого вещества.

В 1841 году явление аллотропии стало известно науке благодаря ученому Йенсу Якобу Берцелиусу, позднее тщательные и долгие исследования этого явления были проделаны А. Шреттером. В 1860 году, вскоре после того как был открыт закон Авогадро , по которому в веществах одного объема, где установлены равные температуры и давление, существует равное количество молекул, ученые поняли, что элементы имеют возможность находиться в форме молекул со множеством атомов. К примеру, О 2 - кислород и О 3 - озон. В самом начале двадцатого века стало понятно, что отличия в кристаллической конструкции простых веществ — это еще одна причина аллотропии.

Аллотропные модификации

На сегодняшний день насчитывается больше четырехсот аллотропных модификаций простых веществ. К примеру, алмаз и графит – это аллотропные модификации углерода, хотя эти вещества внешне совершенно непохожи. У графита структура гексагональная слоистая, а у алмаза выглядит как правильно соединенная с друг другом сетка тетраэдрических образований.

Иногда это явление объединяют с полиморфизмом. Это возможность веществ твердого агрегатного состояния находится в двух или больше видоизменениях с различной кристаллическим построением и свойствами при одинаковом химическом составе. Но аллотропия имеет отношение лишь к простым веществам, вне зависимости от их агрегатного состояния, а полиморфизм — к любому твердому вещество, без указания на то, простое оно или сложное.Несмотря на количество аллотропных модификаций у химического элемента, самым стойким и не разрушающимся оказывается, в большинстве, только одно. Вот примеры одних из самых распространенных примеров аллотропии веществ: углерод может образовать множество аллотропных модификаций - алмаз, графит, карбин и т.д. Кремний образует два аллотропных видоизменения: аморфный и кристаллический кремний.

Аллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен); е) графен;
ж) однослойная нанотрубка

Разнообразие сложных веществ наблюдается из-за их разного количественного состава. Его можно определить по набору электронов, находящихся на электронном уровне атома и количественное содержание протонов и нейтронов в ядре. Но было обнаружено, что химические элементы могут образовывать различные вариации, у которых у ядер один и тот же заряд, но при этом у них разные массы. Такие разновидности атомов называются изотопами. Явления аллотропии и изотопии являются подтверждениями многообразия неорганических веществ.

История

Понятие аллотропии введено в науку Й. Берцелиусом в 1841 году для обозначения разных форм существования элементов; одновременно он предполагал, по-видимому, применить его и к изомерии соединений . После принятия гипотезы А. Авогадро в 1860 году стало понятно, что элементы могут существовать в виде многоатомных молекул, например, О 2 - кислород и О 3 - озон .

В начале XX века было признано, что различия в кристаллической структуре простых веществ (например, углерода или фосфора) также являются причиной аллотропии. В 1912 году В. Оствальд отметил, что аллотропия элементов является просто частным случаем полиморфизма кристаллов , и предложил от него отказаться. Однако, по настоящее время они используются параллельно. Аллотропия относится только к простым веществам, независимо от их агрегатного состояния; полиморфизм - только к твёрдому состоянию независимо от того, простое это вещество или сложное. Таким образом, эти термины совпадают для простых твёрдых веществ (кристаллическая сера, фосфор, железо и др.) .

Примеры аллотропии

Аллотропные модификации фосфора (белый, красный, жёлтый, черный фосфор)

В настоящее время известно более 400 разновидностей простых веществ. Способность элемента к образованию аллотропных форм обусловлена строением атома, которое определяет тип химической связи, строение молекул и кристаллов.

Как правило, большее число аллотропных форм образуют элементы, имеющие переменные значения координационного числа или степени окисления (олово, фосфор). Другим важным фактором является катенация - способность атомов элемента образовывать гомоцепные структуры (например, сера). Склонность к аллотропии более выражена у неметаллов , за исключением галогенов и благородных газов , и полуметаллов .

Принято обозначать различные аллотропические формы одного и того же элемента строчными буквами греческого алфавита; причём форму, существующую при самых низких температурах, обозначают буквой α, следующую - β и т. д.

Неметаллы

Элемент Аллотропные модификации
Водород :

Водород может существовать в виде орто - и пара -водорода. В молекуле орто-водорода o -H 2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины параллельны, а у пара-водорода p -H 2 (т. пл. −259,32 °C, т. кип. −252,89 °C) - антипараллельны.

Углерод :
Фосфор :

Известно 11 аллотропных модификаций фосфора. Основные модификации: белый , красный и чёрный фосфор. Белый фосфор ядовит, светится в темноте, способен самовоспламеняться, красный фосфор не ядовит, не светится в темноте, сам по себе не воспламеняется.

Кислород :

Две аллотропные модификации: О 2 - кислород и О 3 - озон . Кислород бесцветен, не имеет запаха; озон имеет выраженный запах, имеет бледно-фиолетовый цвет, он более бактерициден.

Сера :

Большое число аллотропных модификаций, второе место после углерода. Основные модификации: ромбическая, моноклинная и пластическая сера.

Селен :

Красный цикло-Se 8 , серый полимер Se и чёрный селен.

Полуметаллы

Элемент Аллотропные модификации
Бор :

Бор существует в аморфном и кристаллическом видах. Аморфный бор – порошок бурого цвета. Обладает большей реакционной способностью, чем кристаллический бор. Кристаллический бор – вещество черного цвета. Известно более 10 аллотропных модификаций бора, которые кристаллизуются в ромбической и тетрагональной сингониях. Наиболее устойчивая модификация – β-ромбический бор – состоит из икосаэдров B 12 , которые образуют слои, объединенные в бесконечную структуру.

Кремний :

Различают две основные аллотропные модификации кремния - аморфную и кристаллическую. Решётка кристаллической модификации кремния - атомная, алмазоподобная. Также выделяют поликристаллический и монокристаллический кремний.

Мышьяк :

Три основные аллотропные модификации: жёлтый мышьяк (неметалл, состоящий из молекул As 4 - структура, аналогичная белому фосфору), серый мышьяк (полуметаллический полимер), чёрный мышьяк (неметаллическая молекулярная структура, аналогичная красному фосфору).

Германий :

Две аллотропные модификации: α-Ge - полуметалл с алмазоподобной кристаллической решёткой и β-Ge - с металлической структурой, аналогичной β-Sn.

Сурьма :

Известны четыре металлических аллотропных модификаций сурьмы, существующих при различных давлениях, и три аморфные модификации (взрывчатая, чёрная и жёлтая сурьма), из которых наиболее устойчива металлическая форма серебристо-белого цвета с синеватым оттенком

Полоний :

Полоний существует в двух аллотропных металлических модификациях. Кристаллы одной из них – низкотемпературной – имеют кубическую решетку (α-Po), а другой – высокотемпературной – ромбическую (β-Po). Фазовый переход из одной формы в другую происходит при 36 °C, однако при обычных условиях полоний находится в высокотемпературной форме вследствие разогрева собственным радиоактивным излучением.

Металлы

Среди металлов, которые встречаются в природе в больших количествах (до U, без Tc и Pm), 28 имеют аллотропные формы при атмосферном давлении: Li, Be, Na, Ca, Sc, Ti, Mn, Fe, Co, Sr, Y, Zr, Sn, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Yb, Hf, Tl, Th, Pa, U. Также важны аллотропные формы ряда металлов, образующиеся при их технологической обработке: Ti при 882˚C, Fe при 912˚C и 1394˚C, Co при 422˚C, Zr при 863˚C, Sn при 13˚C и U при 668˚C и 776˚C.

Энантиотропные и монотропные переходы

Серое и белое олово

Переход одной аллотропной модификации в другую происходит при изменении температуры или давления (или одновременном воздействии обоих факторов) и связан со скачкообразным изменением свойств вещества. Этот процесс бывает обратимым (энантиотропным ) и необратимым (монотропным ).

Примером энантиотропного перехода может служить превращение ромбической серы в моноклинную α-S (ромб.) ↔ β-S (монокл.) при 95,6 °C. При обычной температуре стабильной является ромбическая модификация серы, которая при нагревании до 95,6 °С при нормальной давлении переходит в моноклинную форму. Последняя при охлаждении ниже 95,6 °С вновь переходит в ромбическую форму.

К монотропному переходу относится превращение белого фосфора P 4 под давление 1,25 ГПа и температуре 200 °C в более стабильную модификацию - чёрный фосфор. При возвращении к обычным условиям обратный переход не происходит. Переход из нестабильной формы в стабильную в принципе возможен при любой температуре, а обратный - нет, то есть определенная точка перехода отсутствует. Еще один пример - превращение графита в алмаз при давлении 6 ГПа и температуре 1500 °C в присутствии катализатора (никель, хром, железо и другие металлы). В обоих случаях давление способствует превращению, поскольку образуется вещества с более высокой плотностью, чем исходные.




Загрузка...