electricschool.ru

Генно инженерный метод исследования. Биология, генетическая инженерия

Генная инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.

Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации - генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген - участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген - один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов прежде всего связано с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов.

1. Рестрикция - разрезание ДНК, например, человека на фрагменты.

2. Лигирование - фрагмент с нужным геном включают в плазмиды и сшивают их.

3. Трансформация -введение рекомбинантных плазмид в бактериальные клетки. Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков - клон.

4. Скрининг - отбор среди клонов трансформированных бактерий тех, которые плазмиды, несущие нужный ген человека.

Весь этот процесс называется клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней.

Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее - либо в пробирке, либо в чреве приемной матери. Клонированная овечка Доли была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы - донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород, взамен многолетней селекции.

Ученые Техасского университета смогли продлить жизнь нескольких типов человеческих клеток. Обычно клетка умирает, пережив около 7-10 процессов деления, а они добились сто делений клетки. Старение, по мнению ученых, происходит из-за того, что клетки при каждом делении теряют теломеры, молекулярные структуры, которые располагаются на концах всех хромосом. Ученые имплантировали в клетки открытый ими ген, отвечающий за выработку теломеразы и тем самым сделали их бессмертными. Возможно это будущий путь к бессмертию.

Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50-100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке будет функционировать геномная медицина и генная инженерия.

11 Июля 2008

Генная инженерия (генетическая инженерия) – совокупность методов и технологий, в том числе технологий получения рекомбинантных рибонуклеиновых и дезоксирибонуклеиновых кислот, по выделению генов из организма, осуществлению манипуляций с генами и введению их в другие организмы .

Генная инженерия – составная часть современной биотехнологии, теоретической основой ее является молекулярная биология, генетика. Суть новой технологии заключается в направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма (in vitro) с последующим внедрением созданных конструкций в живой организм. В результате достигается их включение и активность в данном организме и у его потомства. Возможности генной инженерии – генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных (генетически модифицированных, трансгенных) организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим.

С точки зрения методологии генная инженерия сочетает в себе фундаментальные принципы (генетика, клеточная теория, молекулярная биология, системная биология), достижения самых современных постгеномных наук: геномики, метаболомики, протеомики с реальными достижениями в прикладных направлениях: биомедицина, агробиотехнология, биоэнергетика, биофармакология, биоиндустрия и т.д.

Генная инженерия относится (наряду с биотехнологией, генетикой, молекулярной биологией, и рядом других наук о жизни) к сфере естественных наук.

Историческая справка

Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. В 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК, на рубеже 50 – 60-х годов 20 века были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально. Шло интенсивное развитие молекулярной генетики, объектами которой стали E.coli, ее вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов. ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов. В 1970 году Г.Смитом был впервые выделен ряд ферментов – рестриктаз, пригодных для генно-инженерных целей. Г.Смит установил, что полученный из бактерий очищенный фермент HindII сохраняет способность разрезать молекулы нуклеиновых кислот (нуклеазная активность), характерную для живых бактерий. Комбинирование ДНК-рестриктаз (для разрезания молекул ДНК на определенные фрагменты) и выделенных еще в 1967 г. ферментов – ДНК-лигаз (для «сшивания» фрагментов в произвольной последовательности) по праву можно считать центральным звеном в технологии генной инженерии.

Таким образом, к началу 70-х годов были сформулированы основные принципы функционирования нуклеиновых кислот и белков в живом организме и созданы теоретические предпосылки генной инженерии

Академик А.А. Баев был первым в нашей стране ученым, который поверил в перспективность генной инженерии и возглавил исследования в этой области. Генетическая инженерия (по его определению) – конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе – создание искусственных генетических программ.

Задачи и методы генной инженерии

Хорошо известно, что традиционная селекция имеет целый ряд ограничений, которые препятствуют получению новых пород животных, сортов растений или рас практически ценных микроорганизмов:

1. отсутствие рекомбинации у неродственных видов. Между видами существуют жесткие барьеры, затрудняющие естественную рекомбинацию.
2. невозможность управлять процессом рекомбинации в организме извне. Отсутствие гомологии между хромосомами приводит к неспособности сближаться и обмениваться отдельными участками (и генами) в процессе образования половых клеток. В результате становится невозможным перенос нужных генов и обеспечение оптимального сочетания в новом организме генов, полученных от разных родительских форм;
3. невозможность точно задать признаки и свойства потомства, т.к. процесс рекомбинации – статистический.

Природные механизмы, стоящие на страже чистоты и стабильности генома организма, практически невозможно преодолеть методами классической селекции.

Технология получения генетически модифицированных организмов (ГМО) принципиально решает вопросы преодоления всех естественных и межвидовых рекомбинационных и репродуктивных барьеров. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Генная инженерия позволяет оперировать любыми генами, даже синтезированными искусственно или принадлежащими не родственным организмам, переносить их от одного вида к другому, комбинировать в произвольном порядке.

Технология включает несколько этапов создания ГМО:

1. Получение изолированного гена.
2. Введение гена в вектор для встраивания в организм.
3. Перенос вектора с конструкцией в модифицируемый организм-рецепиент.
4. Молекулярное клонирование.
5. Отбор ГМО.

Первый этап – синтез, выделение и идентификация целевых фрагментов ДНК или РНК и регуляторных элементов очень хорошо разработан и автоматизирован. Изолированный ген может быть также получен из фаговой библиотеки.

Второй этап – создание in vitro (в пробирке) генетической конструкции (трансгена), которая содержит один или несколько фрагментов ДНК (кодирующих последовательность аминокислот белков) в совокупности с регуляторными элементами (последние обеспечивают активность трансгенов в организме). Далее трансгены встраивают в ДНК вектора для клонирования, используя инструментарий генной инженерии – рестриктазы и лигазы. За открытие рестриктаз Вернер Арбер, Даниел Натанс и Хамилтон Смит были удостоены Нобелевской премии (1978 г.). Как правило, в качестве вектора используют плазмиды – небольшие кольцевые молекулы ДНК бактериального происхождения.

Следующий этап – собственно «генетическая модификация» (трансформация), т.е. перенос конструкции «вектор – встроенная ДНК» в отдельные живые клетки. Введение готового гена в наследственный аппарат клеток растений и животных представляет собой сложную задачу, которая была решена после изучения особенностей внедрения чужеродной ДНК (вируса или бактерии) в генетический аппарат клетки. Процесс трансфекции был использован как принцип введения генетического материала в клетку.

Если трансформация прошла успешно, то после эффективной репликации из одной трансформированной клетки возникает множество дочерних клеток, содержащих искусственно созданную генетическую конструкцию. Основой для появления у организма нового признака служит биосинтез новых для организма белков – продуктов трансгена, например, растений – устойчивости к засухе или насекомым-вредителям у ГМ растений.

Для одноклеточных организмов процесс генетической модификации ограничивается встраиванием рекомбинантной плазмиды с последующим отбором модифицированных потомков (клонов). Для высших многоклеточных организмов, например, растений, то обязательным является включение конструкции в ДНК хромосом или клеточных органелл (хлоропластов, митохондрий) с последующей регенерацией целого растения из отдельной изолированной клетки на питательных средах. В случае животных, клетки с измененным генотипом вводят в бластоциды суррогатной матери. Первые ГМ растения были получены в 1982 году учеными из Института растениеводства в Кельне и компании Monsanto.

Основные направления

Постгеномная эра в первой декаде XXI-ого века подняла на новый уровень развитие генной инженерии. Так называемый Кельнский Протокол «На пути к биоэкономике, основанной на знаниях» , определил биоэкономику как «преобразование знаний наук о жизни в новую, устойчивую, экологически эффективную и конкурентоспособную продукцию». Дорожная карта генной инженерии содержит целый ряд направлений: генотерапия, биоиндустрия, технологии, основанные на стволовых клетках животных, ГМ растения, ГМ животные и т.д.

Генетически модифицированные растения

Ввести чужеродную ДНК в растения можно различными способами.

Для двудольных растений существует естественный вектор для горизонтального переноса генов: плазмиды агробактерий. Что касается однодольных, то, хотя в последние годы достигнуты определенные успехи в их трансформации агробактериальными векторами, все же подобный путь трансформации встречает существенные затруднения.

Для трансформации устойчивых к агробактериям растений разработаны приемы прямого физического переноса ДНК в клетку они включают: бомбардировку микрочастицами или баллистический метод; электропорацию; обработку полиэтиленгликолем; перенос ДНК в составе липосом и др.

После проведения тем или иным способом трансформации растительной ткани ее помещают in vitro на специальную среду с фитогормонами, способствующую размножению клеток. Среда обычно содержит селективный агент, в отношении которого трансгенные, но не контрольные клетки приобретают устойчивость. Регенерация чаще всего проходит через стадию каллуса, после чего при правильном подборе сред начинается органогенез (побегообразование). Сформированные побеги переносят на среду укоренения, часто также содержащую селективный агент для более строгого отбора трансгенных особей.

Первые трансгенные растения (растения табака со встроенными генами из микроорганизмов) были получены в 1983 г. Первые успешные полевые испытания трансгенных растений (устойчивые к вирусной инфекции растения табака) были проведены в США уже в 1986 г.

После прохождения всех необходимых тестов на токсичность, аллергенность, мутагенность и т.д. первые трансгенные продукты появились в продаже в США в 1994 г. Это были томаты Flavr Savr с замедленным созреванием, созданные фирмой «Calgen», а также гербицид-устойчивая соя компании «Monsanto». Уже через 1-2 года биотехнологические фирмы поставили на рынок целый ряд генетически измененных растений: томатов, кукурузы, картофеля, табака, сои, рапса, кабачков, редиса, хлопчатника.

В РФ возможность получения трансгенного картофеля методом бактериальной трансформации с использованием Agrobacterium tumefaciens была показана в 1990 г.

В настоящее время получением и испытанием генетически модифицированных растений занимаются сотни коммерческих фирм во всем мире с совокупным капиталом более 100 миллиардов долларов. Генно-инженерная биотехнология растений уже стала важной отраслью производства продовольствия и других полезных продуктов, привлекающей значительные людские ресурсы и финансовые потоки.

В России под руководством академика К.Г. Скрябина (Центр «Биоинженерия» РАН) получены и охарактеризованы ГМ сорта картофеля Елизавета плюс и Луговской плюс, устойчивые к колорадскому жуку. По результатам проверки Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека на основании экспертного заключения ГУ НИИ питания РАМН данные сорта прошли государственную регистрацию, внесены в государственный реестр и разрешены для ввоза, изготовления и оборота на территории РФ.

Данные ГМ сорта картофеля принципиально отличается от обычных наличием в его геноме встроенного гена, определяющего 100%-ю защиту урожая от колорадского жука без использования каких-либо химических средств.

Первая волна трансгенных растений, допущенных для практического применения, содержала дополнительные гены устойчивости (к болезням, гербицидам, вредителям, порче при хранении, стрессам).

Нынешний этап развития генетической инженерии растений получил название «метаболическая инженерия». При этом ставится задача не столько улучшить те или иные имеющиеся качества растения, как при традиционной селекции, сколько научить растение производить совершенно новые соединения, используемые в медицине, химическом производстве и других областях. Этими соединениями могут быть, например, особые жирные кислоты, полезные белки с высоким содержанием незаменимых аминокислот, модифицированные полисахариды, съедобные вакцины, антитела, интерфероны и другие «лекарственные» белки, новые полимеры, не засоряющие окружающую среду и многое, многое другое. Использование трансгенных растений позволяет наладить масштабное и дешевое производство таких веществ и тем самым сделать их более доступными для широкого потребления.

Генетически модифицированные животные

Клетки животных существенно отличаются от бактериальных по своей способности поглощать чужеродную ДНК, поэтому методы и способы способы введения генов в эмбриональные клетки млекопитающих, мух и рыб остаются в центре внимания генных инженеров.

Наиболее изученное в генетическом отношении млекопитающее – мыши. Первый успех относится к 1980 году, когда Д. Гордон с сотрудниками продемонстрировал возможность введения и интеграции чужеродной ДНК в геном мышей. Интеграция была стабильной и сохранялась у потомства. Трансформацию производят микроинъекцией клонированных генов в один или оба пронуклеуса (ядра) только что эмбриона на стадии одной клетки (зиготы). Чаще выбирают мужской пронуклеус, привнесенный сперматозоидом, так как его размеры больше. После инъекции яйцеклетку немедленно имплантируют в яйцевод приемной матери, или дают возможность развиваться в культуре до стадии бластоцисты, после чего имплантируют в матку.

Таким образом были инъецированы гены интерферона и инсулина человека, ген β-глобина кролика, ген тимидинкиназы вируса простого герпеса и кДНК вируса лейкемии мышей. Число молекул, вводимое за одну инъекцию, колеблется от 100 до 300 000, а их размер – от 5 до 50 кб. Выживает обычно 10 – 30% яйцеклеток, а доля мышей, родившихся из трансформированных яйцеклеток варьирует от нескольких до 40%. Таким образом, реальная эффективность составляет около 10%.

Таким методом получены генно-инженерные крысы, кролики, овцы, свиньи, козы, телята и другие млекопитающие. В нашей стране получены свиньи, несущие ген соматотропина. Они не отличались по темпам роста от нормальных животных, но изменение обмена веществ сказалось на содержании жира. У таких животных ингибировались процессы липогенеза и активировался синтез белка. К изменению обмена веществ приводило и встраивание генов инсулиноподобного фактора. ГМ свиньи были созданы для изучения цепочки биохимических превращений гормона, а побочным эффектом явилось укрепление иммунной системы.

Самая мощная белоксинтезирующая система находится в клетках молочной железы. Если поставить гены чужих белков под контроль казеинового промотора, то экспрессия этих генов будет мощной и стабильной, а белок будет накапливаться в молоке. С помощью животных-биореакторов (трансгенные коровы) уже получено молоко, в котором содержится человеческий белок лактоферрин. Этот белок планируется применять для профилактики гастроэнтерологических заболеваний у людей с низкой иммунорезистентностью: больные СПИДом, недоношенные младенцы, больные раком, прошедшие радиотерапию.

Важное направление трансгеноза – получение устойчивых к болезням животных. Ген интерферона, относящийся к защитным белкам, встраивали различным животным. Трансгенные мыши получили устойчивость – они не болели или болели мало, а вот у свиней такого эффекта не обнаружено.

Применение в научных исследованиях

Нокаут гена (gene knockout) – техника удаления одного или большего количества генов, что позволяет исследовать функции гена. Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а измененные клетки имплантируют в бластоцист суррогатной матери. Сходным способом получают нокаут у растений и микроорганизмов.

Искусственная экспрессия – добавление в организм гена, которого у него ранее не было, также с целями изучения функции генов. Визуализация продуктов генов – используется для изучения локализации продукта гена. Замещение нормального гена на сконструрованный ген, слитый с репортёрным элементом, (например, с геном зелёного флуоресцентного белка) обеспечивает визуализацию продукта генной модификации.

Исследование механизма экспрессии. Небольшой участок ДНК, расположенный перед кодирующей областью (промотор) и служащий для связывания факторов транскрипции, вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP, катализирующий легко обнаруживаемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать экспрессию генов.

Биобезопасность генно-инженерной деятельности

Еще в 1975 г. ученые всего мира на Асиломарской конференции подняли важнейший вопрос: не окажет ли появление ГМО потенциально негативного воздействия на биологическое разнообразие? С этого момента одновременно с бурным развитием генной инженерии стало развиваться новое направление - биобезопасность. Главная ее задача - оценить не несет ли использование ГМО нежелательное воздействие на окружающую среду, здоровье человека и животных, а главная цель - открыть путь к использованию достижений современной биотехнологии, гарантируя при этом безопасность.

Стратегия биобезопасности основывается на научном исследовании особенностей ГМО, опыте обращения с ним, а также информации о его предполагаемом использовании и окружающей среде, в которую он будет интродуцирован. Совместными многолетними усилиями международных организаций (ЮНЕП, ВОЗ, ОЭСР), экспертов из разных стран, в т. ч. России, были разработаны базовые понятия и процедуры: биологическая безопасность, биологическая опасность, риск, оценка рисков. Только после того, как полный цикл проверок будет успешно осуществлен, готовится научное заключение о биобезопасности ГМО. В 2005 г. ВОЗ опубликовало доклад, согласно которому употребление зарегистрированных в качестве пищи ГМ растений также безопасно, как их традиционных аналогов.

Как обеспечивается биобезопасность в России? Началом включения России в мировую систему биобезопасности можно считать ратификацию «Конвенции о биоразнообразии» в 1995 году. С этого момента началось формирование национальной системы биобезопасности, отправной точкой которой явилось вступление в силу Федерального закона РФ «О государственном регулировании в области генно-инженерной деятельности» (1996 г.). ФЗ устанавливает основные понятия и принципы государственного регулирования и контроля всех видов работ с ГМО. ФЗ устанавливает уровни риска в зависимости от типа ГМО и вида работ, дает определения замкнутой и открытой систем, выпуска ГМО и т.д.

За прошедшие годы в России сформировалась одна из самых жестких систем регулирования. Неординарен тот факт, что система государственного регулирования ГМО стартовала превентивно, в 1996 году, до того, как реальные генно-инженерные организмы были заявлены для коммерциализации на территории России (первый ГМО – ГМ соя - была зарегистрирована для пищевого использования в 1999г.). Базовыми правовыми инструментами служат государственная регистрация генно-инженерно-модифицированных организмов, а также продукции, полученной из них или их содержащей, предназначенных для использования в качестве пищи и кормов.

Для понимания современной ситуации важен факт, что в течение 25 лет, прошедших с момента первого выхода ГМ растений на рынок, не было выявлено ни одного достоверного отрицательного воздействия их на окружающую среду и здоровье человека и животных ни в ходе испытаний, ни при коммерческом использовании. Только в одном из мировых источников – отчете авторитетного общества AGBIOS «Essential Biosafety» содержится более 1000 ссылок на исследования, доказывающие, что пища и корма, полученные из биотехнологических культур, настолько же безопасны, насколько безопасны и традиционные продукты. Однако на сегодняшний день в России отсутствует нормативно-правовая база, которая позволила бы осуществлять на территории нашей страны выпуск в окружающую среду ГМ растений, а также продукции, полученной из них или их содержащей. Как следствие – на 2010 год ни одно ГМ растение не выращивается на территории Российской Федерации в коммерческих целях.

По прогнозу, согласно Кельнскому Протоколу (2007 г), к 2030 г. отношение к сельскохозяйственным ГМ культурам изменится в сторону одобрения их использования.

Достижения и перспективы развития

Генная инженерия в медицине

Потребности здравоохранения, необходимость решения проблем старения населения формируют устойчивый спрос на генно-инженерные фармпрепараты (с годовым объемом продаж в 26 млрд. долл. США) и лечебно-косметические средства из растительного и животного сырья (с годовым объемом продаж около 40 млрд. долл. США).

Среди многих достижений генной инженерии, получивших применение в медицине, наиболее значительное – получение человеческого инсулина в промышленных масштабах.

В настоящее время по данным ВОЗ в мире насчитывается около 110 млн. людей, страдающих диабетом. Инсулин, инъекции которого показаны больным этим заболеванием, уже давно получают из органов животных и используют в медицинской практике. Однако многолетнее применение животного инсулина ведет к необратимому поражению многих органов пациента из-за иммунологических реакций, вызываемых инъекцией чужеродного человеческому организму животного инсулина. Но даже потребности в животном инсулине до недавнего времени удовлетворялись всего на 60 – 70%. Генные инженеры в качестве первой практической задачи клонировали ген инсулина. Клонированные гены человеческого инсулина были введены с плазмидой в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. Начиная с 1982 года фирмы США, Японии, Великобритании и других стран производят генно-инженерный инсулин. В России получение генно-инженерного человеческого инсулина – Инсурана ведется в Институте биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН. Сегодня отечественный инсулин производится в объеме, достаточном для обеспечения больных диабетом г. Москвы. Вместе с тем, потребность всего российского рынка в генно-инженерном инсулине удовлетворяется, в основном, импортными поставками. Мировой рынок инсулина составляет в настоящее время более 400 млн. долларов, ежегодное потребление около 2500 кг.

Развитие генной инженерии в 80-х годах прошлого столетия обеспечило хороший задел России в создании генно-инженерных штаммов микроорганизмов с заданными свойствами – продуцентов биологически активных веществ, в разработке генно-инженерных методов реконструирования генетического материала вирусов, в получении лекарственных субстанций, в том числе и с использованием компьютерного моделирования. До стадии производства доведены рекомбинантный интерферон и лекарственные формы на его основе медицинского и ветеринарного назначения, интерлейкин (b-лейкин), эритропоэтин. Несмотря на растущий спрос на высокоочищенные препараты, отечественное производство иммуноглобулинов, альбумина, плазмола обеспечивает 20% потребностей внутреннего рынка.

Активно ведутся исследования по разработке вакцин для профилактики и лечения гепатитов, СПИДа и ряда других заболеваний, а также конъюгированных вакцин нового поколения против наиболее социально значимых инфекций. Полимер-субъединичные вакцины нового поколения состоят из высокоочищенных протективных антигенов различной природы и носителя – иммуностимулятора полиоксидония, обеспечивающего повышенный уровень специфического иммунного ответа. Прививки против подавляющего большинства известных инфекций Россия могла бы обеспечить на базе собственного иммунологического производства. Полностью отсутствует только производство вакцины против краснухи.

Генная инженерия для сельского хозяйства

Генетическое улучшение сельскохозяйственных культур и декоративных растений представляет собой длительный и непрерывный процесс с использованием все более точных и предсказуемых технологий. В научном отчете ООН (за 1989 год) сказано следующее: «Поскольку молекулярные методы наиболее точны, те, кто их применяет, в большей степени уверены в том, какими признаками они наделяют растения, и, следовательно, реже получают незапланированные эффекты, чем при использовании обычных методов селекции.»

Преимущества новых технологий уже широко используются в таких странах, как США, Аргентина, Индия, Китай и Бразилия, где генетически модифицированные культуры возделывают на больших территориях.

Новые технологии также имеют большое значение для малоимущих фермеров и жителей бедных стран, особенно женщин и детей. Например, генетически модифицированные, устойчивые к вредителям, хлопчатник и кукуруза требуют применения инсектицидов в значительно меньших объемах (что делает труд на ферме более безопасным). Такие культуры способствуют повышению урожайности, получению фермерами более высоких доходов, снижению уровня бедности и риска отравления населения химическими пестицидами, что особенно характерно для ряда стран, в том числе для Индии, Китая, ЮАР и Филиппин.

Самыми распространенными ГМ растениями являются культуры, устойчивые к недорогим, наименее токсичным и наиболее широко используемым гербицидам. Возделывание таких культур позволяет получать более высокий урожай с гектара, избавиться от изнурительной ручной прополки, тратить меньше средств за счет минимальной или беспахотной обработки земли, что, в свою очередь, приводит к снижению эрозии почвы.

В 2009 году произошла замена генетически модифицированных культур первого поколения продуктами второго поколения, что впервые привело к увеличению урожайности per se. Пример биотехнологической культуры нового класса (над созданием которой работали многие исследователи) – устойчивая к глифосату соя RReady2Yield™ , выращивалась в 2009 году в США и Канаде более чем на 0.5 миллионах га.

Внедрение генной инженерии в современную агробиологию может быть проиллюстрировано следующими фактами из ряда зарубежных экспертных обзоров, в том числе, из ежегодного обзора независимой Международной службы по мониторингу за применением агробиотехнологий (ISAАA), возглавляемой известным в мире экспертом Клайвом Джеймсом (Claiv James): (www.isaaa.org)

В 2009 году в 25 странах мира выращивали ГМ культуры на площади 134 млн. га (что составляет 9% от 1,5 млрд. га всех пахотных земель в мире). Шесть стран ЕС (из 27) возделывали Bt кукурузу, и в 2009 году площади ее посевов достигли более 94 750 га. Анализ мирового экономического эффекта использования биотехнологических культур за период с 1996 по 2008 г.г. показывает рост прибыли в размере 51,9 миллиардов долларов благодаря двум источникам: во-первых, это сокращение производственных затрат (50%) и, во-вторых, значительная прибавка урожая (50%) в размере 167 миллионов тонн.

В 2009 году общая рыночная стоимость семян ГМ культур в мире составила 10.5 миллиардов долларов. Общая стоимость по зерну биотех кукурузы и сои, а также хлопчатника в 2008 году составила 130 млрд. долларов, и ожидается, что ее ежегодный рост составит 10 – 15%.

Подсчитано, что в случае полного принятия биотехнологии, к концу периода 2006 – 2015 г. прибыль всех стран в пересчете на ВВП вырастет на 210 млрд. долл. США в год.

Наблюдения, проводимые с начала применения в сельском хозяйстве устойчивых к гербицидам сельскохозяйственных культур, убедительно доказывают, что фермеры получили возможность более эффективно бороться с сорняками. При этом рыхление и распахивание полей утрачивают свое значение как средства борьбы с сорняками. В итоге снижается расход тракторного топлива, улучшается структура почвы и предотвращается ее эрозия. Целевые инсектицидные программы выращивания Bt хлопчатника предусматривают меньшее число опрыскиваний посевов и, следовательно, меньшее количество выездов техники на поля, что приводит к сокращению эрозии почв. Все это невольно содействует внедрению консервирующей технологии обработки почвы, направленной на снижение почвенной эрозии, уровня углекислого газа и уменьшения потери воды.

Для современного состояния науки характерен комплексный подход, создание единых технологических платформ для проведения широкого спектра исследований. Они объединяют не только биотехнологию, молекулярную биологию и генную инженерию, но также и химию, физику, биоинформатику, транскриптомику, протеомику, метаболомику.

Рекомендуемая литература
1. Дж. Уотсон. Молекулярная биология гена. М.: Мир. 1978.
2. Стент Г., Кэлиндар Р. Молекулярная генетика. М.: Мир. 1981
3. С.Н. Щелкунов «Генетическая инженерия». Новосибирск, издательство Сибирского Университета, 2008
4. Глик Б. Молекулярная биотехнология. Принципы и применение / Б. Глик, Дж. Пастернак. М.: Мир, 2002
5. Генная инженерия растений. Лабораторное руководство. Под редакцией Дж. Дрейпера, Р.Скотта, Ф. Армитиджа, Р. Уолдена. М.: «Мир». 1991.
6. Агробиотехнология в мире. Под ред. Скрябина К.Г. М.: Центр «Биоинженерия» РАН, 2008. – 135 с.
7. Кларк. Д., Рассел Л. Молекулярная биология простой и занимательный подход. М.: ЗАО «Компания КОНД». 2004

Ссылки
1. «О государственном регулировании генно-инженерной деятельности». ФЗ-86 в ред. 2000 г., ст.1
2. Кельнский Протокол, Cologne Paper, принят на конференции «На пути к Биоэкономике, основанной на знаниях» (Кельн, 30 мая 2007 г.), организованной Европейским Союзом в период президентства Германии в ЕС.

ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ, совокупность методов биохимии и молекулярной генетики, с помощью которых осуществляется направленное комбинирование генетической информации любых организмов. Генетическая инженерия позволяет преодолевать природные межвидовые барьеры, препятствующие обмену генетической информацией между таксономически удалёнными видами организмов, и создавать клетки и организмы с не существующими в природе сочетаниями генов, с заданными наследуемыми свойствами. Главным объектом генно-инженерного воздействия является носитель генетической информации - дезоксирибонуклеиновая кислота (ДНК), молекула которой обычно состоит из двух цепей. Строгая специфичность спаривания пуриновых и пиримидиновых оснований обусловливает свойство комплементарности - взаимного соответствия нуклеотидов в двух цепях. Создание новых сочетаний генов оказалось возможным благодаря принципиальному сходству строения молекул ДНК у всех видов организмов, а фактическая универсальность генетические кода обеспечивает экспрессию чужеродных генов (проявление их функциональной активности) в любых видах клеток. Этому способствовало также накопление знаний в области химии нуклеиновых кислот, выявление молекулярных особенностей организации и функционирования генов (в том числе установление механизмов регуляции их экспрессии и возможности подчинения генов действию «чужих» регуляторных элементов), разработка методов секвенирования ДНК, открытие полимеразной цепной реакции, позволившей быстро синтезировать любой фрагмент ДНК. Важными предпосылками для появления генетической инженерии явились: открытие плазмид, способных к автономной репликации и переходу из одной бактериальной клетки в другую, и явления трансдукции - переноса некоторых генов бактериофагами, что позволило сформулировать представление о векторах: молекулах - переносчиках генов. Огромное значение в развитии методологии генетической инженерии сыграли ферменты, участвующие в преобразовании нуклеиновых кислот: рестриктазы (узнают в молекулах ДНК строго определённые последовательности - сайты - и «разрезают» двойную цепь в этих местах), ДНК-лигазы (ковалентно связывают отдельные фрагменты ДНК), обратная транскриптаза (синтезирует на матрице РНК комплементарную копию ДНК, или кДНК) и др. Только при их наличии создание искусственных структур стало технически выполнимой задачей. Ферменты используются для получения индивидуальных фрагментов ДНК (генов) и создания молекулярных гибридов - рекомбинантных ДНК (рекДНК) на основе ДНК плазмид и вирусов. Последние доставляют нужный ген в клетку хозяина, обеспечивая там его размножение (клонирование) и образование конечного продукта гена (его экспрессию).

Принципы создания рекомбинантных молекул ДНК. Термин «генетическая инженерия» получил распространение после того, как в 1972 году П. Бергом с сотрудниками впервые была получена рекомбинантная ДНК, представлявшая собой гибрид, в котором были соединены фрагменты ДНК бактерии кишечной палочки, её вируса (бактериофага λ) и ДНК обезьяньего вируса SV40 (рис. 1). В 1973 году С. Коэн с сотрудниками использовали плазмиду pSC101 и рестриктазу (EcoRI), которая разрывает её в одном месте таким образом, что на концах двухцепочечной молекулы ДНК образуются короткие комплементарные одноцепочечные «хвосты» (обычно 4-6 нуклеотидов). Их назвали «липкими», поскольку они могут спариваться (как бы слипаться) друг с другом. Когда такую ДНК смешивали с фрагментами чужеродной ДНК, обработанной той же рестриктазой и имеющей такие же липкие концы, получались новые гибридные плазмиды, каждая из которых содержала, по крайней мере, один фрагмент чужеродной ДНК, встроенной в EcoRI-сайт плазмиды (рис. 2). Стало очевидным, что в такие плазмиды можно встраивать фрагменты разнообразных чужеродных ДНК, полученных как из микроорганизмов, так и из высших эукариот.

Основной современной стратегии получения рекДНК сводится к следующему:

1) в ДНК плазмиды или вируса, способных размножаться независимо от хромосомы, встраивают принадлежащие другому организму фрагменты ДНК, содержащие определённые гены или искусственно полученные последовательности нуклеотидов, представляющие интерес для исследователя;

2) образующиеся при этом гибридные молекулы вводят в чувствительные прокариотические или эукариотические клетки, где они реплицируются (размножаются, амплифицируются) вместе со встроенными в них фрагментами ДНК;

3) отбирают клоны клеток в виде колоний на специальных питательных средах (или вирусов в виде зон просветления - бляшек на слое сплошного роста клеток бактерий или культур тканей животных), содержащие нужные типы молекул рекДНК и подвергают их разностороннему структурно-функциональному изучению. Для облегчения отбора клеток, в которых присутствует рекДНК, используют векторы, содержащие один и более маркеров. У плазмид, например, такими маркерами могут служить гены устойчивости к антибиотикам (отбор клеток, содержащих рекДНК, проводят по их способности расти в присутствии того или иного антибиотика). РекДНК, несущие нужные гены, отбирают и вводят в реципиентные клетки. С этого момента начинается молекулярное клонирование - получение копий рекДНК, а следовательно, и копий целевых генов в её составе. Только при возможности разделения всех трансфицированных или инфицированных клеток каждый клон будет представлен отдельной колонией клеток и содержать определённую рекДНК. На заключительном этапе производится идентификация (поиск) клонов, в которых заключён нужный ген. Она основывается на том, что вставка в рекДНК детерминирует какое-то уникальное свойство содержащей его клетки (например, продукт экспрессии встроенного гена). В опытах по молекулярному клонированию соблюдаются 2 основных принципа: ни одна из клеток, где происходит клонирование рекДНК, не должна получить более одной плазмидной молекулы или вирусной частицы; последние должны быть способны к репликации.

В качестве векторных молекул в генетической инженерии используется широкий спектр плазмидных и вирусных ДНК. Наиболее популярны клонирующие векторы, содержащие несколько генетических маркеров и имеющие по одному месту действия для разных рестриктаз. Таким требованиям, например, лучше всего отвечает плазмида pBR322, которая была сконструирована из исходно существующей в природе плазмиды с помощью методов, применяемых при работе с рекДНК; она содержит гены устойчивости к ампициллину и тетрациклину, а также по одному сайту узнавания для 19 разных рестриктаз. Частным случаем клонирующих векторов являются экспрессирующие векторы, которые наряду с амплификацией обеспечивают правильную и эффективную экспрессию чужеродных генов в реципиентных клетках. В ряде случаев молекулярные векторы могут обеспечивать интеграцию чужеродной ДНК в геном клетки или вируса (их называют интегративными векторами).

Одна из важнейших задач генетической инженерии - создание штаммов бактерий или дрожжей, линий клеток тканей животных или растений, а также трансгенных растений и животных (смотри Трансгенные организмы), которые обеспечивали бы эффективную экспрессию клонируемых в них генов. Высокий уровень продукции белков достигается в том случае, если гены клонируются в многокопийных векторах, т.к. при этом целевой ген будет находиться в клетке в большом количестве. Важно, чтобы кодирующая последовательность ДНК находилась под контролем промотора, который эффективно узнаётся РНК-полимеразой клетки, а образующаяся мРНК была бы относительно стабильной и эффективно транслировалась. Кроме того, чужеродный белок, синтезируемый в реципиентных клетках, не должен подвергаться быстрой деградации внутриклеточными протеазами. При создании трансгенных животных и растений часто добиваются тканеспецифичной экспрессии вводимых целевых генов.

Поскольку генетический код универсален, возможность экспрессии гена определяется лишь наличием в его составе сигналов инициации и терминации транскрипции и трансляции, правильно узнаваемых хозяйской клеткой. Т. к. большинство генов высших эукариот имеет прерывистую экзон-интронную структуру, в результате транскрипции таких генов образуется матричная РНК-предшественник (пре-мРНК), из которой при последующем сплайсинге выщепляются некодирующие последовательности - интроны и образуется зрелая мРНК. Такие гены не могут экспрессироваться в клетках бактерий, где отсутствует система сплайсинга. Для того чтобы преодолеть это препятствие, на молекулах зрелой мРНК с помощью обратной транскриптазы синтезируют ДНК-копию (кДНК), к которой с помощью ДНК-полимеразы достраивается вторая цепь. Такие фрагменты ДНК, соответствующие кодирующей последовательности генов (уже не разделённой нитронами), можно встраивать в подходящий молекулярный вектор.

Зная аминокислотную последовательность целевого полипептида, можно синтезировать кодирующую его нуклеотидную последовательность, получив так называемый ген-эквивалент, и встроить его в соответствующий экспрессирующий вектор. При создании гена-эквивалента обычно учитывают свойство вырожденности генетического кода (20 аминокислот кодируются 61 кодоном) и частоту встречаемости кодонов для каждой аминокислоты в тех клетках, в которые планируется вводить этот ген, так как состав кодонов может существенно отличаться у разных организмов. Правильно подобранные кодоны могут значительно повысить продукцию целевого белка в реципиентной клетке.

Значение генетической инженерии. Генетическая инженерия значительно расширила экспериментальные границы молекулярной биологии, поскольку стало возможным вводить в различные типы клеток чужеродную ДНК и исследовать её функции. Это позволило выявлять общебиологические закономерности организации и выражения генетической информации в различных организмах. Данный подход открыл перспективы создания принципиально новых микробиологических продуцентов биологически активных веществ, а также животных и растений, несущих функционально активные чужеродные гены. Многие ранее недоступные биологически активные белки человека, в том числе интерфероны, интерлейкины, пептидные гормоны, факторы крови, стали нарабатываться в больших количествах в клетках бактерий, дрожжей или млекопитающих и широко использоваться в медицине. Более того, появилась возможность искусственно создавать гены, кодирующие химерные полипептиды, обладающие свойствами двух или более природных белков. Всё это дало мощный импульс к развитию биотехнологии.

Главными объектами генетической инженерии являются бактерии Escherichia coli (кишечная палочка) и Bacilltis subtilis (сенная палочка), пекарские дрожжи Saccharomices cerevisiae, различные линии клеток млекопитающих. Спектр объектов генно-инженерного воздействия постоянно расширяется. Интенсивно развиваются направления исследований по созданию трансгенных растений и животных. Методами генетической инженерии создаются новейшие поколения вакцин против различных инфекционных агентов (первая из них была создана на основе дрожжей, продуцирующих поверхностный белок вируса гепатита В человека). Большое внимание уделяется разработке клонирующих векторов на основе вирусов млекопитающих и использованию их для создания живых поливалентных вакцин для нужд ветеринарии и медицины, а также в качестве молекулярных векторов для генной терапии раковых опухолей и наследственных заболеваний. Разработан метод прямого введения в организм человека и животных рекДНК, направляющих продукцию в их клетках антигенов различных инфекционных агентов (ДНК-вакцинация). Новейшим направлением генетической инженерии является создание съедобных вакцин на основе трансгенных растений, таких как томаты, морковь, картофель, кукуруза, салат и др., продуцирующих иммуногенные белки возбудителей инфекций.

Опасения, связанные с проведением генно-инженерных экспериментов. Вскоре после первых успешных экспериментов по получению рекДНК группа учёных во главе с П. Бергом предложила ограничить проведение ряда генно-инженерных опытов. Эти опасения основывались на том, что свойства организмов, содержащих чужую генетическую информацию, трудно предсказать. Они могут приобрести нежелательные признаки, нарушить экологическое равновесие, привести к возникновению и распространению необычных заболеваний человека, животных, растений. Кроме того, отмечалось, что вмешательство человека в генетический аппарат живых организмов аморально и может вызвать нежелательные социальные и этические последствия. В 1975 году эти проблемы обсуждались на международной конференции в Асиломаре (США). Её участники пришли к заключению о необходимости продолжения использования методов генетической инженерии, но при обязательном соблюдении определённых правил и рекомендаций. Впоследствии эти правила, установленные в ряде стран, были существенно смягчены и свелись к приёмам, обычным в микробиологических исследованиях, созданию специальных защитных устройств, препятствующих распространению биологических агентов в окружающей среде, использованию безопасных векторов и реципиентных клеток, не размножающихся в природных условиях.

Часто под генетической инженерией понимают только работу с рекДНК, а как синонимы генетической инженерии используются термины «молекулярное клонирование», «клонирование ДНК», «клонирование генов». Однако все эти понятия отражают содержание лишь отдельных генно-инженерных операций и поэтому не эквивалентны термину «генетическая инженерия». В России как синоним генетической инженерии широко используется термин «генная инженерия». Однако смысловое содержание этих терминов различно: генетическая инженерия ставит целью создание организмов с новой генетической программой, в то время как термин «генная инженерия» поясняет, как это делается - путём манипуляции с генами.

Лит.: Щелкунов С. Н. Клонирование генов. Новосиб., 1986; он же. Генетическая инженерия. 2-е изд., Новосиб., 2004; Уотсон Дж., Туз Дж., Курц Д. Рекомбинантные ДНК. М., 1986; Клонирование ДНК. Методы. М., 1988; Новое в клонировании ДНК: Методы. М., 1989.

С помощью которых осуществляется направленное комбинирование генетической информации любых организмов. Генетическая инженерия (Г. и.) позволяет преодолевать природные межвидовые барьеры, препятствующие обмену генетической информацией между таксономически удалёнными видами организмов и создавать клетки и организмы с несуществующими в природе сочетаниями генов, с заданными наследуемыми свойствами.

Главным объектом генно-инженерного воздействия является носитель генетической информации - дезоксирибонуклеиновая кислота (ДНК), молекула которой обычно состоит из двух цепей. Строгая специфичность спаривания пуриновых и пиримидиновых оснований обусловливает свойство комплементарности - взаимного соответствия нуклеотидов в двух цепях. Создание новых сочетаний генов оказалось возможным благодаря принципиальному сходству строения молекул ДНК у всех видов организмов, а фактическая универсальность генетич. кода делает возможной экспрессию чужеродных генов (проявление их функциональной активности) в любых видах клеток. Этому способствовало также накопление знаний в области химии , выявление молекулярных особенностей организации и функционирования генов (в т.ч. установление механизмов регуляции их экспрессии и возможности подчинения генов действию «чужих» регуляторных элементов), разработка методов секвенирования ДНК, открытие полимеразной цепной реакции, позволившей быстро синтезировать любой фрагмент ДНК.

Важными предпосылками для появления Г.и. явились: открытие плазмид, способных к автономной репликации и переходу из одной бактериальной клетки в другую, и явления трансдукции - переноса некоторых генов бактериофагами , что позволило сформулировать представление о векторах - молекулах-переносчиках генов.

Огромное значение в развитии методологии Г.и. сыграли ферменты, участвующие в преобразовании нуклеиновых кислот: рестриктазы (узнают в молекулах ДНК строго определенные последовательности (сайты) и «разрезают» двойную цепь в этих местах), ДНК-лигазы (ковалентно связывают отдельные фрагменты ДНК), обратная транскриптаза (синтезирует на матрице РНК комплементарную копию ДНК, или кДНК) и др. Только при их наличии создание искусств. структур стало технически выполнимой задачей. Ферменты используются для получения индивидуальных фрагментов ДНК (генов) и создания молекулярных гибридов - рекомбинантных ДНК (рекДНК) на основе ДНК плазмид и вирусов . Последние доставляют нужный ген в клетку хозяина, обеспечивая там его размножение (клонирование) и образование конечного продукта гена (его экспрессию).

Принципы создания рекомбинантных молекул ДНК

Термин «Г. и.» получил распространение после того, как в 1972 П. Бергом с сотр. впервые была получена рекомбинантная ДНК, представлявшая собой гибрид, в котором были соединены фрагменты ДНК бактерии кишечной палочки, её вируса (бактериофага λ) и ДНК обезьяньего вируса SV40. В 1973 С. Коэн с сотр. использовали плазмиду pSC101 и рестриктазу (Eco RI), которая разрывает её в одном месте таким образом, что на концах двухцепочечной молекулы ДНК образуются короткие комплементарные одноцепочечные «хвосты» (обычно 4-6 нуклеотидов). Их назвали «липкими», поскольку они могут спариваться (как бы слипаться) друг с другом. Когда такую ДНК смешивали с фрагментами чужеродной ДНК, обработанной той же рестриктазой и имеющей такие же липкие концы, получались новые гибридные плазмиды, каждая из которых содержала по крайней мере один фрагмент чужеродной ДНК, встроенной в Eco RI-сайт плазмиды. Стало очевидным, что в такие плазмиды можно встраивать фрагменты разнообразных чужеродных ДНК, полученных как из микроорганизмов, так и из высших эукариот.

Основная современная стратегия получения рекДНК сводится к следующему:

  1. в ДНК плазмиды или вируса, способных размножаться независимо от хромосомы , встраивают принадлежащие др. организму фрагменты ДНК, содержащие определ. гены или искусственно полученные последовательности нуклеотидов, представляющие интерес для исследователя;
  2. образующиеся при этом гибридные молекулы вводят в чувствительные прокариотические или эукариотические клетки, где они реплицируются (размножаются, амплифицируются) вместе со встроенными в них фрагментами ДНК;
  3. отбирают клоны клеток в виде колоний на специальных питательных средах (или вирусов - в виде зон просветления - бляшек на слое сплошного роста клеток бактерий или культур тканей животных), содержащие нужные типы молекул рекДНК и подвергают их разностороннему структурно-функциональному изучению.

Для облегчения отбора клеток, в которых присутствует рекДНК, используют векторы, содержащие один и более маркеров. У плазмид, например, такими маркерами могут служить гены устойчивости к антибиотикам (отбор клеток, содержащих рекДНК, проводят по их способности расти в присутствии того или иного антибиотика). РекДНК, несущие нужные гены, отбирают и вводят в реципиентные клетки. С этого момента начинается молекулярное клонирование - получение копий рекДНК, а значит и копий целевых генов в её составе. Только при возможности разделения всех трансфицированных или инфицированных клеток каждый клон будет представлен отдельной колонией клеток и содержать определ. рекДНК. На заключительном этапе производится идентификация (поиск) клонов, в который заключён нужный ген. Она основывается на том, что вставка в рекДНК детерминирует какое-то уникальное свойство содержащей его клетки (напр., продукт экспрессии встроенного гена). В опытах по молекулярному клонированию соблюдаются 2 основных принципа:

  • ни одна из клеток, где происходит клонирование рекДНК, не должна получить более одной плазмидной молекулы или вирусной частицы;
  • последние должны быть способны к репликации.

В качестве векторных молекул в Г.и. используется широкий спектр плазмидных и вирусных ДНК. Наиболее популярны клонирующие векторы, содержащие несколько генетич. маркеров и имеющие по одному месту действия для разных рестриктаз. Таким требованием, напр., лучше всего отвечает плазмида pBR322, которая была сконструирована из исходно существующей в природе плазмиды с помощью методов, применяемых при работе с рекДНК; она содержит гены устойчивости к ампициллину и тетрациклину, содержит по одному сайту узнавания для 19 разных рестриктаз. Частным случаем клонирующих векторов являются экспрессирующие векторы, которые наряду с амплификацией обеспечивают правильную и эффективную экспрессию чужеродных генов в реципиентных клетках. В ряде случаев молекулярные векторы могут обеспечивать интеграцию чужеродной ДНК в геном клетки или вируса (их называют интегративными векторами).

Одна из важнейших задач Г.и. - создание штаммов бактерий или дрожжей, линий клеток тканей животных или растений, а также трансгенных растений и животных (см. Трансгенные организмы), которые обеспечивали бы эффективную экспрессию клонируемых в них генов. Высокий уровень продукции белков достигается в том случае, если гены клонируются в многокопийных векторах, т.к. при этом целевой ген будет находиться в клетке в большом количестве. Важно, чтобы кодирующая последовательность ДНК находилась под контролем промотора, который эффективно узнаётся РНК-полимеразой клетки, а образующаяся мРНК была бы относительно стабильной и эффективно транслировалась. Кроме того, чужеродный белок, синтезируемый в реципиентных клетках, не должен подвергаться быстрой деградации внутриклеточными протеазами. При создании трансгенных животных и растений часто добиваются тканеспецифичной экспрессии вводимых целевых генов.

Поскольку генетич. код универсален, возможность экспрессии гена определяется лишь наличием в его составе сигналов инициации и терминации транскрипции и трансляции, правильно узнаваемых хозяйской клеткой. Т.к. большинство генов высших эукариот имеет прерывистую экзон-интронную структуру, в результате транскрипции таких генов образуется матричная РНК-предшественник (пре-мРНК), из которой при последующем сплайсинге выщепляются некодирующие последовательности - интроны, и образуется зрелая мРНК. Такие гены не могут экспрессироваться в клетках бактерий, где отсутствует система сплайсинга. Для того чтобы преодолеть это препятствие на молекулах зрелой мРНК с помощью обратной транскриптазы синтезируют ДНК-копию (кДНК), к которой с помощью ДНК-полимеразы достраивается вторая цепь. Такие фрагменты ДНК, соответствующие кодирующей последовательности генов (уже не разделённой интронами), можно встраивать в подходящий молекулярный вектор.

Зная аминокислотную последовательность целевого полипептида, можно синтезировать кодирующую его нуклеотидную последовательность, получив т.н. ген-эквивалент, и встроить его в соответствующий экспрессирующий вектор. При создании гена-эквивалента обычно учитывают свойство вырожденности генетич. кода (20 аминокислот кодируются 61 кодоном) и частоту встречаемости кодонов для каждой аминокислоты в тех клетках, в которые планируется вводить этот ген, т.к. состав кодонов может существенно отличаться у разных организмов. Правильно подобранные кодоны могут значительно повысить продукцию целевого белка в реципиентной клетке.

Значение генетической инженерии

Г.и. значительно расширила экспериментальные границы , поскольку позволила вводить в разл. типы клеток чужеродную ДНК и исследовать её функции. Это позволило выявлять общебиологич. закономерности организации и выражения генетич. информации в разл. организмах. Данный подход открыл перспективы создания принципиально новых микробиологич. продуцентов биологически активных веществ. а также животных и растений, несущих функционально активные чужеродные гены. Мн. ранее недоступные биологически активные белки человека, в т.ч. интерфероны, интерлейкины, пептидные гормоны, факторы крови стали нарабатываться в больших количествах в клетках бактерий, дрожжей или млекопитающих, и широко использоваться в медицине. Более того, появилась возможность искусственно создавать гены, кодирующие химерные полипептиды, обладающие свойствами двух или более природных белков. Все это дало мощный импульс к развитию биотехнологии .

Глвными объектами Г.и. являются бактерии Escherichia coli (кишечная палочка) и Bacillus subtilis (сенная палочка), пекарские дрожжи Saccharomices cerevisiae , разл. линии клеток млекопитающих. Спектр объектов генно-инженерного воздействия постоянно расширяется. Интенсивно развиваются направления исследований по созданию трансгенных растений и животных. Методами Г.и. создаются новейшие поколения вакцин против различных инфекционных агентов (первая из них была создана на основе дрожжей, продуцирующих поверхностный белок вируса гепатита В человека). Большое внимание уделяется разработке клонирующих векторов на основе вирусов мле-копитающих и использованию их для создания живых поливалентных вакцин для нужд ветеринарии и медицины, а также в качестве молекулярных векторов для генной терапии раковых опухолей и наследственных заболеваний. Разработан метод прямого введения в организм человека и животных рекДНК, направляющих продукцию в их клетках антигенов разл. инфекционных агентов (ДНК-вакцинация). Новейшим направлением Г.и. является создание съедобных вакцин на основе трансгенных растений, таких как томаты, морковь, картофель, кукуруза, салат и др., продуцирующих иммуногенные белки возбудителей инфекций.

Опасения, связанные с проведением генно-инженерно экспериментов

Вскоре после первых успешных экспериментов по получению рекДНК группа учёных во главе с П. Бергом предложила ограничить проведение ряда генно-инженерных опытов. Эти опасения основывались на том, что свойства организмов, содержащих чужую генетич. информацию, трудно предсказать. Они могут приобрести нежелательные признаки, нарушить экологич. равновесие, привести к возникновению и распространению необычных заболеваний человека, животных, растений. Кроме того отмечалось, что вмешательство человека в генетич. аппарат живых организмов аморально и может вызвать нежелательные социальные и этические последствия. В 1975 эти проблемы обсуждались на междунар. конференции в Асиломаре (США). Её участники пришли к заключению о необходимости продолжения использования методов Г.и. но при обязательном соблюдении определ. правил и рекомендаций. Впоследствии эти правила, установленные в ряде стран, были существенно смягчены и свелись к приёмам обычным в микробиологич. исследованиях, созданию спец. защитных устройств, препятствующих распространению биологич. агентов в окружающей среде, использованию безопасных векторов и реципиентных клеток, не размножающихся в природных условиях.

Часто под Г.и. понимают только работу с рекДНК, а как синонимы Г.и. используются термины «Молекулярное клонирование», «Клонирование ДНК», «Клонирование генов». Однако все эти понятия отражают содержание лишь отдельных генно-инженерных операций и поэтому не эквивалентны термину Г.и. В России как синоним Г.и. широко используется термин «генная инженерия». Однако смысловое содержание этих терминов различно: Г.и. ставит целью создание организмов с новой генетич. программой, в то время как термин «генная инженерия» поясняет как это делается, т.е. путём манипуляции с генами.

Литература

Щелкунов С.Н. Клонирование генов. Новосибирск, 1986; Уотсон Дж ., Туз Дж ., Курц Д. Рекомбинантные ДНК: Краткий курс. М., 1986; Клонирование ДНК. Методы М., 1988; Новое в клонировании ДНК: Методы М., 1989. Щелкунов С.Н. Генетическая инженерия. 2-е изд., Новосибирск, 2004.

Экономическое значение

Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма . В отличие от традиционной селекции , в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования . Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путём использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.

Основой микробиологической, биосинтетической промышленности является бактериальная клетка. Необходимые для промышленного производства клетки подбираются по определённым признакам, самый главный из которых - способность производить, синтезировать, при этом в максимально возможных количествах, определённое соединение - аминокислоту или антибиотик, стероидный гормон или органическую кислоту. Иногда надо иметь микроорганизм, способный, например, использовать в качестве «пищи» нефть или сточные воды и перерабатывать их в биомассу или даже вполне пригодный для кормовых добавок белок. Иногда нужны организмы, способные развиваться при повышенных температурах или в присутствии веществ, безусловно смертельных для других видов микроорганизмов.

Задача получения таких промышленных штаммов очень важна, для их видоизменения и отбора разработаны многочисленные приёмы активного воздействия на клетку - от обработки сильнодействующими ядами, до радиоактивного облучения. Цель этих приёмов одна - добиться изменения наследственного, генетического аппарата клетки. Их результат - получение многочисленных микробов-мутантов, из сотен и тысяч которых учёные потом стараются отобрать наиболее подходящие для той или иной цели. Создание приёмов химического или радиационного мутагенеза было выдающимся достижением биологии и широко применяется в современной биотехнологии .

Но их возможности ограничиваются природой самих микроорганизмов. Они не способны синтезировать ряд ценных веществ, которые накапливаются в растениях, прежде всего в лекарственных и эфирномасличных. Не могут синтезировать вещества, очень важные для жизнедеятельности животных и человека, ряд ферментов, пептидные гормоны, иммунные белки, интерфероны да и многие более просто устроенные соединения, которые синтезируются в организмах животных и человека. Разумеется, возможности микроорганизмов далеко не исчерпаны. Из всего изобилия микроорганизмов использована наукой, и особенно промышленностью, лишь ничтожная доля. Для целей селекции микроорганизмов большой интерес представляют, например, бактерии анаэробы , способные жить в отсутствие кислорода, фототрофы, использующие энергию света подобно растениям, хемоавтотрофы, термофильные бактерии, способные жить при температуре, как обнаружилось недавно, около 110 °C, и др.

И всё же ограниченность «природного материала» очевидна. Обойти ограничения пытались и пытаются с помощью культур клеток и тканей растений и животных. Это очень важный и перспективный путь, который также реализуется в биотехнологии . За последние несколько десятилетий учёные создали методы, благодаря которым отдельные клетки тканей растения или животного можно заставить расти и размножаться отдельно от организма, как клетки бактерий. Это было важное достижение - полученные культуры клеток используют для экспериментов и для промышленного получения некоторых веществ, которые с помощью бактериальных культур получить невозможно.

История развития и достигнутый уровень технологии

Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии . Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках - это мутации. Они происходят под действием, например, мутагенов - химических ядов или излучений. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

Основные этапы решения генноинженерной задачи следующие:

1. Получение изолированного гена. 2. Введение гена в вектор для переноса в организм. 3. Перенос вектора с геном в модифицируемый организм. 4. Преобразование клеток организма. 5. Отбор генетически модифицированных организмов (ГМО ) и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды). Получила распространение техника, позволяющая использовать для синтеза ДНК , в том числе мутантной, полимеразную цепную реакцию . Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК , в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты - олигонуклеотиды. Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице выделенной из клеток РНК . Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, «химически чистый» ген может быть также получен из фаговой библиотеки. Так называется препарат бактериофага , в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК .

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации . В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК , плазмидами . Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки.

Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных. Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать «свой» белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция .

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование , то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом , среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение в научных исследованиях

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем



Загрузка...