electricschool.ru

Металлическая медь: описание элемента, свойства и применение. Физические и химические свойства меди

Медь - элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) - это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

История и происхождение названия

Медь - один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом - бронзы для изготовления оружия и т. п. (см бронзовый век).
Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди.
У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр, ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник. Сторонники индогерманской теории происхождения европейских языков производят русское слово медь (польск. miedz, чешск. med) от древненемецкого smida (металл) и Schmied (кузнец, англ. Smith). Конечно, родство корней в данном случае несомненно, однако, оба эти слова произведены от греч. рудник, копь независимо друг от друга. От этого слова произошли и родственные названия - медаль, медальон (франц. medaille). Слова медь и медный встречаются в древнейших русских литературных памятниках. Алхимики именовали медь венера (Venus). В более древние времена встречается название марс (Mars).

Физические свойства

Медь - золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.
Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.
Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра).
Имеет два стабильных изотопа - 63 Cu и 65 Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64 Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.
Существует ряд сплавов меди: латуни - с цинком, бронзы - с оловом и другими элементами, мельхиор - с никелем, баббиты - со свинцом и другие.

Химические свойства

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

Современные способы добычи

90 % первичной меди получают пирометаллургическим способом, 10 % - гидрометаллургическим. Гидрометаллургический способ - это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.
Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.
Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700-800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.
После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20-40 % железа, 22-25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450 °C.
С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200-1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4 - 99,4 % меди, 0,01 - 0,04 % железа, 0,02 - 0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.
Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0 - 99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.
Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод - из меди огневого рафинирования, а катод - из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5-12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах.

Приблизительно III тысячелетие до нашей эры считается переходным от камня как основного промышленного вещества к бронзе. Период перестройки принято считать медным веком. Ведь именно это соединение на тот период времени было самым главным в строительстве, в изготовлении предметов быта, посуды и прочих процессах.

На сегодняшний день медь своей актуальности не потеряла и по-прежнему считается очень важным металлом, часто используемым в разных нуждах. Медь - это тело или вещество? Какими свойствами она обладает и для чего нужна? Попробуем разобраться далее.

Общая характеристика элемента медь

Физические свойства

Медь - это вещество или тело? Полностью убедиться в правильности ответа можно лишь рассмотрев ее физические свойства. Если мы говорим о данном элементе как о простом веществе, то для него характерен следующий набор свойств.

  1. Металл красного цвета.
  2. Мягкий и очень ковкий.
  3. Отличный теплопроводник и электропроводник.
  4. Не тугоплавкий, температура плавления составляет 1084,5 0 С.
  5. Плотность составляет 8,9 г/см 3 .
  6. В природе встречается в основном в самородном виде.

Таким образом, получается, что медь - это вещество, причем известное с самой древности. На основе нее издревле создаются многие архитектурные сооружения, изготовляется посуда и предметы быта.

Химические свойства

С точки зрения химической активности, медь - это тело или вещество, обладающее низкой способностью к взаимодействию. Существует две основные степени окисления этого элемента, которые он проявляет в соединениях. Это:

Очень редко можно встретить вещества, в которых данные значения заменяются на +3.

Итак, медь может взаимодействовать с:

  • воздухом;
  • углекислым газом;
  • соляной кислотой и некоторыми другими соединениями только при очень высоких температурах.

Все это объясняется тем, что на поверхности металла формируется защитная оксидная пленка. Именно она предохраняет его от дальнейшего окисления и придает стабильность и малоактивность.

Из простых веществ медь способна взаимодействовать с:

  • галогенами;
  • селеном;
  • цианидами;
  • серой.

Часто формирует комплексные соединения либо Практически все сложные соединения данного элемента, кроме оксидов - ядовитые вещества. Те молекулы, которые образует одновалентная медь, легко окисляются до двувалентных представителей.

Области применения

Медь - это смесь или которое в любом из этих состояний находит широкое применение в промышленности и быту. Можно обозначить несколько основных отраслей использования соединений меди и чистого металла.

  1. в которой используются некоторые соли.
  2. Производство меха и шелка.
  3. Изготовление удобрений, средств защиты растений от вредителей
  4. Сплавы меди находят широкое применение в автомобилестроении.
  5. Судостроение, авиаконструкции.
  6. Электротехника, в которой медь используется, благодаря хорошей антикоррозионной устойчивости и высокой электро- и теплопроводности.
  7. Различное приборостроение.
  8. Изготовление посуды и бытовых предметов хозяйственного значения.

Очевидно, что несмотря на долгие сотни лет, рассматриваемый металл только укрепил свои позиции и доказал состоятельность и незаменимость в применении.

Сплавы меди и их свойства

Существует много сплавов на основе меди. Она сама отличается высокими техническими характеристиками, так как легко поддается ковке и прокатке, является легкой и достаточно прочной. Однако при добавлении определенных компонентов свойства значительно улучшаются.

В данном случае следует задать вопрос: "Медь - это вещество или физическое тело, когда речь идет о ее сплавах?" Ответ будет такой: это вещество. Все равно она является именно им до тех пор, пока из сплава не будет изготовлено какое-либо физическое тело, то есть определенный продукт.

Какие сплавы меди бывают?

  1. Практически равное сочетание меди и цинка в одном составе принято называть латунью. Этот сплав отличается высокой прочностью и устойчивостью к химическим воздействиям.
  2. Оловянистая бронза - сочетание меди и олова.
  3. Мельхиор - никель и медь в соотношении 20/80 из 100. Используется для изготовления украшений.
  4. Константан - сочетание никеля, меди и добавка марганца.

Биологическое значение

Не столь важно, медь - это вещество или тело. Значимо другое. Какую роль играет медь в жизни живых организмов? Оказывается, весьма немаловажную. Так, ионы рассматриваемого металла выполняют следующие функции.

  1. Участвуют в преобразовании ионов железа в гемоглобин.
  2. Являются активными участниками процессов роста и размножения.
  3. Позволяют усваиваться аминокислоте тирозину, следовательно влияют на проявление цвета волос, кожи.

Если организм недополучает данный элемент в нужном количестве, то могут возникать неприятные заболевания. Например, анемия, облысение, болезненная худоба и прочее.

Медь

медь — металл розовато-красного цвета, пластичный, с высокими коррозионной стойкостью, электро- и теплопроводностью. В древности из меди изготовляли различные бытовые изделия и орудия труда. Ныне она — один из наиболее ценных конструкционных материалов. Медь используют для изготовления кабелей, проводов, деталей электротехнических установок, в химическом машиностроении и теплотехнике. Широко распространены сплавы на основе меди: бронза, латунь, мельхиор, константан.

Бронза — сплав меди с различными элементами: оловом, алюминием, свинцом, марганцем и т. д., кроме цинка и никеля (сплав меди с цинком называется латунью, а с никелем — медно-никелевым сплавом). Имеет золотисто-жёлтый цвет; при окислении поверхностного слоя приобретает другую окраску — от зелёной до густокоричневой и чёрной; применяется для изготовления сантехнических приборов, деталей машин, художественных изделий и т. д.

Латунь — сплав меди с цинком, часто с добавками алюминия, никеля, железа, марганца, олова и другие.гих элементов. Имеет цвет от красноватого до золотисто-жёлтого в зависимости от содержания цинка. Из латуни протягивают прутки, прокатывают листы, получают изделия литьём, ковкой, штамповкой и прессованием; изготовляют винты, гайки, детали сантехнического оборудования и электротехнических устройств; применяется в художественном литье, чеканке, гравировке, ювелирном деле.

Мельхиор — коррозионностойкий сплав меди с никелем (5—30%), иногда с добавлением железа (0,8%) и марганца (1%). По внешнему виду напоминает серебро; применяется для производства посуды, создания художественных изделий и в других целях.

Константан — сплав меди с никелем (39—41%) и марганцем (1—2%). Обладает относительно высоким электрическим сопротивлением; используется для изготовления реостатов, резисторов, термопар.


Энциклопедия «Жилище». - М.: Большая Российская энциклопедия . А. А. Богданов, В. И. Бородулин, Е. А. Карнаухов, В. И. Штейман . 1999 .

Синонимы :

Смотреть что такое "медь" в других словарях:

    медь - медь, и … Русский орфографический словарь

    медь - медь/ … Морфемно-орфографический словарь

    медь - и; ж. 1. Химический элемент (Сu), ковкий металл желтого цвета с красноватым отливом (широко применяется в промышленности). Добыча меди. Надраить м. самовара. Изготовить из меди котелок. 2. собир. Изделия из этого металла. Вся м. в подвале… … Энциклопедический словарь

    МЕДЬ - жен. в чистом, корольковом виде называется красною, а в сплаве с цинком желтою или зеленою. | Медные деньги; | медная посуда. Медь, в продаже, вообще бывает: штыковая, дощатая, листовая (или латунь), прутковая. Медь дороже серебра: серебро… … Толковый словарь Даля

    МЕДЬ - (символ Сu), переходный элемент красно розового цвета. Красноватая медь встречается в виде самородков, а также в составе нескольких руд, в том числе, куприта (оксид меди) и халькопирита (сульфид меди). Руды извлекают из окружающей их породы и… … Научно-технический энциклопедический словарь

    медь - cu, мягкий, ковкий и пластичный металл красного цвета; химический элемент i группы периодической системы; ат. н. 29, ат. масса 63.546. Плотность 8920 кг/мі, температура плавления 1083.4 °C. Латинское cuprum происходит от названия о. Кипр,… … Энциклопедия техники

    МЕДЬ - МЕДЬ, меди, мн. нет, жен. 1. Металл красноватого цвета, наиболее вязкий после железа, ковкий, широко употребительный. Красная медь (чистая медь). Желтая медь (сплав меди с цинком). 2. Медные деньги (разг.). Сдали сдачи серебром и медью. Толковый… … Толковый словарь Ушакова

    МЕДЬ - (симв. Си), хим. элемент, порядковый номер 29; атомный вес 63,57, уд. в. 8,93; t° пл. 1 083°; принадлежит к числу металлов. В природе М. встречается иногда в чистом виде (самородная М.), но чаще в виде соединений, образующих медные руды.… … Большая медицинская энциклопедия

    медь - сущ., ж., употр. сравн. часто Морфология: (нет) чего? меди, чему? меди, (вижу) что? медь, чем? медью, о чём? о меди 1. Медь это металл красно жёлтого цвета, который часто используется для изготовления монет, проводов и других изделий. Добыча меди … Толковый словарь Дмитриева

    МЕДЬ - см. МЕДЬ (Си) содержится в сточных водах рудообогатительных комбинатов, металлургических, машиностроительных и электротехнических предприятий. Сульфат, карбонат, хлорокись и арсенат меди применяют как альгициды, фунгициды и моллюскоциды. Медь… … Болезни рыб: Справочник

    МЕДЬ - (Cuprum), Cu, химический элемент I группы периодической системы, атомный номер 29, атомная масса 63,546; розовато красный металл, tпл 1083,4шC. Содержание в земной коре (4,7 5,5)?10 3% по массе. Медь главный металл электротехники, ее используют… … Современная энциклопедия

Книги

  • Медь , Сергей Сергеев. Русские умеют хорошо устроиться в любой стране мира. Виктор Черкасов, в прошлом агент разведки, отлично обосновался в Африке. Сделав состояние на поставках оружия новым африканским…

Древние греки называли этот элемент халкосом, на латинском она именуется cuprum (Сu) или aes, а средневековые алхимики именовали этот химический элемент не иначе как Марс или Венера. Человечество давно познакомилось с медью за счет того, что в природных условиях ее можно было встретить в виде самородков, имеющих зачастую весьма внушительные размеры.

Легкая восстанавливаемость карбонатов и окислов данного элемента поспособствовала тому, что именно его, по мнению многих исследователей, наши древние предки научились восстанавливать из руды раньше всех остальных металлов.

Сначала медные породы просто-напросто нагревали на открытом огне, а затем резко охлаждали. Это приводило к их растрескиванию, что давало возможность выполнять восстановление металла.

Освоив столь нехитрую технологию, человек начал постепенно развивать ее. Люди научились вдувать при помощи мехов и труб в костры воздух, затем додумались устанавливать вокруг огня стены. В конце концов, была сконструирована и первая шахтная печь.

Многочисленные археологические раскопки позволили установить уникальный факт – простейшие медные изделия существовали уже в 10 тысячелетии до нашей эры! А более активно медь начала добываться и использоваться через 8–10 тысяч лет. Именно с тех пор человечество применяет этот уникальный по многим показателям (плотность, удельный вес, магнитные характеристики и так далее) химический элемент для своих нужд.

В наши дни медные самородки встречаются крайне редко. Медь добывают из различных , среди которых можно выделить следующие:

  • борнит (в нем купрума бывает до 65 %);
  • медный блеск (он же халькозин) с содержанием меди до 80 %;
  • медный колчедан (иначе говоря – халькоперит), содержащий порядка 30 % интересующего нас химического элемента;
  • ковеллин (в нем Cu бывает до 64 %).

Также купрум добывают из малахита, куприта, иных оксидных руд и еще без малого из 20 минералов, содержащих ее в различных количествах.

2

В простом виде описываемый элемент представляет собой металл розовато-красного оттенка, характеризуемый высокими пластичными возможностями. Природный купрум включает в себя два нуклида со стабильной структурой.

Радиус положительно заряженного иона меди имеет следующие значения:

  • при координационном показателе 6 – до 0,091 нм;
  • при показателе 2 – до 0,060 нм.

А нейтральный атом элемента характеризуется радиусом 0,128 нм и сродством к электрону 1,8 эВ. При последовательной ионизации атом имеет величины от 7,726 до 82,7 эВ.

Купрум является переходным металлом, поэтому он имеет переменные степени окисления и малый показатель электроотрицательности (1,9 единиц по шкале Полинга). (коэффициент) равняется 394 Вт/(м*К) при температурном интервале от 20 до 100 °С. Электропроводность меди (удельный показатель) составляет максимум 58, минимум 55,5 МСм/м. Более высокой величиной характеризуется лишь серебро, электропроводность других металлов, в том числе и алюминия, ниже.

Медь не может вытеснять водород из кислот и воды, так как в стандартном потенциальном ряду она стоит правее водорода. Описываемый металл характеризуется гранецентрированной кубической решеткой с величиной 0,36150 нм. Кипит медь при температуре 2657 градусов, плавится при температуре чуть больше 1083 градусов, а ее плотность равняется 8,92 грамм/кубический сантиметр (для сравнения – плотность алюминия равняется 2,7).

Другие механические свойства меди и важные физические показатели:

  • давление при 1628 °С – 1 мм рт. ст.;
  • термическая величина расширения (линейного) – 0,00000017 ед.;
  • при растяжении достигается предел прочности равный 22 кгс/мм2;
  • твердость меди – 35 кгс/мм2 (шкала Бринелля);
  • удельный вес – 8,94 г/см3;
  • модуль упругости – 132000 Мн/м2;
  • удлинение (относительное) – 60 %.

Магнитные свойства меди в какой-то мере уникальны. Элемент полностью диамагнитен, показатель его магнитной атомной восприимчивости составляет всего лишь 0,00000527 ед. Магнитные характеристики меди (впрочем, как и все ее физические параметры – вес, плотность и пр.) обуславливают востребованность элемента для изготовления электротехнических изделий. Примерно такие же характеристики имеются и у алюминия, поэтому они с описываемым металлом составляют "сладкую парочку", используемую для производства проводниковых деталей, проводов, кабелей.

Многие механические показатели меди изменить практически нереально (те же магнитные свойства, например), а вот предел прочности рассматриваемого элемента можно улучшить посредством выполнения наклепа. В данном случае он повысится примерно в два раза (до 420–450 МН/м2).

3

Купрум в системе Менделеева включен в группу благородных металлов (IB), находится он в четвертом периоде, имеет 29 порядковый номер, имеет склонность к комплексообразованию. Химические характеристики меди не менее важны, чем ее магнитные, механические и физические показатели, будь то ее вес, плотность либо иная величина. Поэтому мы будем говорить о них подробно.

Химическая активность купрума мала. Медь в условиях сухой атмосферы изменяется незначительно (можно даже сказать, что почти не изменяется). А вот при повышении влажности и наличии в окружающей среде углекислого газа на ее поверхности обычно формируется пленка зеленоватого оттенка. В ней присутствует CuCO3 и Cu(OH)2, а также различные сернистые медные соединения. Последние образовываются из-за того, что в воздухе практически всегда есть некоторое количество сероводорода и сернистого газа. Указанную зеленоватую пленку именуют патиной. Она защищает от разрушения металл.

Если медь нагреть на воздухе, начнутся процессы окисления ее поверхности. При температурах от 375 до 1100 градусов в результате окисления образуется двухслойная окалина, а при температуре до 375 градусов – оксид меди. При обычной же температуре обычно наблюдается соединение Cu с влажным хлором (итог такой реакции – появление хлорида).

С иными элементами группы галогенов медь также взаимодействует достаточно легко. В парах серы она загорается, высокий уровень сродства она имеет и к селену. Зато с углеродом, азотом и водородом Сu не соединяется даже при повышенных температурах. При контакте оксида меди с серной кислотой (разбавленной) получается сульфат и чистая медь, с иодоводородной и бромоидоводородной кислотой – иодид и бромид меди соответственно.

Если же оксид соединить с той или иной щелочью, результатом химической реакции станет появление купрата. А вот самые известные восстановители (оксид углерода, аммиак, метан и другие) способны восстановить купрум до свободного состояния.

Практический интерес представляет способность этого металла вступать в реакцию с солями железа (в виде раствора). В этом случае фиксируется восстановление железа и переход Cu в раствор. Данная реакция применяется для снятия с декоративных изделий напыленного слой меди.

В одно- и двухвалентных формах медь способна создавать комплексные соединения с высоким показателем устойчивости. К таким соединениям относят аммиачные смеси (они представляют интерес для промышленных предприятий) и двойные соли.

4

Главная сфера применения алюминия и меди известна, пожалуй, всем. Из них делают разнообразные кабели, в том числе и силовые. Способствует этому малое сопротивление алюминия и купрума, их особые магнитные возможности. В обмотках электрических приводов и в трансформаторах (силовых) широко используются медные провода, которые характеризуются уникальной чистотой меди, являющейся исходным сырьем для их выпуска. Если в такое чистейшее сырье добавить всего лишь 0,02 процента алюминия, электропроводимость изделия уменьшится процентов 8–10.

Сu, имеющий высокую плотность и прочность, а также малый вес, прекрасно поддается механической обработке. Это позволяет производить отличные медные трубы, которые демонстрируют свои высокие эксплуатационные характеристики в системах подачи газа, отопления, воды. Во многих европейских государствах именно медные трубы используются в подавляющем большинстве случаев для обустройства внутренних инженерных сетей жилых и административных строений.

Мы много сказали об электропроводимости алюминия и меди. Не забудем и об отличной теплопроводности последней. Данная характеристика дает возможность использовать медь в следующих конструкциях:

  • в тепловых трубках;
  • в кулерах персональных компьютеров;
  • в отопительных системах и системах охлаждения воздуха;
  • в теплообменниках и многих других устройствах, отводящих тепло.

Плотность и небольшой вес медных материалов и сплавов обусловили и их широкое применение в архитектуре.

5

Понятно, что плотность меди, ее вес и всевозможные химические и магнитные показатели, по большому счету, мало интересуют обычного человека. А вот целебные свойства меди хотят узнать многие.

Древние индийцы применяли медь для лечения органов зрения и различных недугов кожных покровов. Древние греки излечивали медными пластинками язвы, сильную отечность, синяки и ушибы, а также и более серьезные болезни (воспаления миндалин, врожденную и приобретенную глухоту). А на востоке медный красный порошок, растворенный в воде, применялся для восстановления сломанных костей ног и рук.

Лечебные свойства меди были хорошо известны и россиянам. Наши предки излечивали с помощью этого уникального металла холеру, эпилепсию, полиартриты и радикулиты. В настоящее время для лечения обычно используются медные пластинки, которые накладываются на специальные точки на теле человека. Целебные свойства меди при такой терапии проявляются в следующем:

  • защитный потенциал организма человека возрастает;
  • инфекционные болезни не страшны тем, кто лечится медью;
  • наблюдается снижение болевых ощущений и снятие воспалительных явлений.

Свойства меди, которая в природе встречается и в виде достаточно крупных самородков, люди изучили еще в древние времена, когда из этого металла и его сплавов делали посуду, оружие, украшения, различные изделия бытового назначения. Активное использование данного металла на протяжении многих лет обусловлено не только его особыми свойствами, но и простотой обработки. Медь, которая присутствует в руде в виде карбонатов и окислов, достаточно легко восстанавливается, что и научились делать наши древние предки.

Изначально процесс восстановления этого металла выглядел очень примитивно: медную руду просто нагревали на кострах, а затем подвергали резкому охлаждению, что приводило к растрескиванию кусков руды, из которых уже можно было извлекать медь. Дальнейшее развитие такой технологии привело к тому, что в костры начали вдувать воздух: это повышало температуру нагревания руды. Затем нагрев руды стали выполнять в специальных конструкциях, которые и стали первыми прототипами шахтных печей.

О том, что медь используется человечеством с древних времен, свидетельствуют археологические находки, в результате которых были найдены изделия из данного металла. Историками установлено, что первые изделия из меди появились уже в 10 тысячелетии до н.э, а наиболее активно она стала добываться, перерабатываться и использоваться спустя 8–10 тысяч лет. Естественно, предпосылками к такому активному использованию данного металла стали не только относительная простота его получения из руды, но и его уникальные свойства: удельный вес, плотность, магнитные свойства, электрическая, а также удельная проводимость и др.

В наше время уже сложно найти в виде самородков, обычно ее добывают из руды, которая подразделяется на следующие виды.

  • Борнит - в такой руде медь может содержаться в количестве до 65%.
  • Халькозин, который также называют медным блеском. В такой руде меди может содержаться до 80%.
  • Медный колчедан, также называемый халькопиритом (содержание до 30%).
  • Ковеллин (содержание до 64%).

Медь также можно извлекать из множества других минералов (малахит, куприт и др.). В них она содержится в разных количествах.

Физические свойства

Медь в чистом виде представляет собой металл, цвет которого может варьироваться от розового до красного оттенка.

Радиус ионов меди, имеющих положительный заряд, может принимать следующие значения:

  • если координационный показатель соответствует 6-ти - до 0,091 нм;
  • если данный показатель соответствует 2 - до 0,06 нм.

Радиус атома меди составляет 0,128 нм, также он характеризуется сродством к электрону, равном 1,8 эВ. При ионизации атома данная величина может принимать значение от 7,726 до 82,7 эВ.

Медь - это переходный металл, показатель электроотрицательности которого составляет 1,9 единиц по шкале Полинга. Кроме этого, его степень окисления может принимать различные значения. При температурах, находящихся в интервале 20–100 градусов, его теплопроводность составляет 394 Вт/м*К. Электропроводность меди, которую превосходит лишь серебро, находится в интервале 55,5–58 МСм/м.

Так как медь в потенциальном ряду стоит правее водорода, она не может вытеснять этот элемент из воды и различных кислот. Ее кристаллическая решетка имеет кубический гранецентрированный тип, величина ее составляет 0,36150 нм. Плавится медь при температуре 1083 градусов, а температура ее кипения - 26570. Физические свойства меди определяет и ее плотность, которая составляет 8,92 г/см3.

Из ее механических свойств и физических показателей стоит также отметить следующие:

  • термическое линейное расширение - 0,00000017 единиц;
  • предел прочности, которому медные изделия соответствуют при растяжении, составляет 22 кгс/мм2;
  • твердость меди по шкале Бринелля соответствует значению 35 кгс/мм2;
  • удельный вес 8,94 г/см3;
  • модуль упругости составляет 132000 Мн/м2;
  • значение относительного удлинения равно 60%.

Совершенно уникальными можно считать магнитные свойства данного металла, который является полностью диамагнитным. Именно эти свойства, наряду с физическими параметрами: удельным весом, удельной проводимостью и другими, в полной мере объясняют широкую востребованность данного металла при производстве изделий электротехнического назначения. Похожими свойствами обладает алюминий, который также успешно используется при производстве различной электротехнической продукции: проводов, кабелей и др.

Основную часть характеристик, которыми обладает медь, практически невозможно изменить, за исключением предела прочности. Данное свойство можно улучшить практически в два раза (до 420–450 МН/м2), если осуществить такую технологическую операцию, как наклеп.

Химические свойства

Химические свойства меди определяются тем, какое положение она занимает в таблице Менделеева, где она имеет порядковый номер 29 и располагается в четвертом периоде. Что примечательно, она находится в одной группе с благородными металлами. Это лишний раз подтверждает уникальность ее химических свойств, о которых следует рассказать более подробно.

В условиях невысокой влажности медь практически не проявляет химическую активность. Все меняется, если изделие поместить в условия, характеризующиеся высокой влажностью и повышенным содержанием углекислого газа. В таких условиях начинается активное окисление меди: на ее поверхности формируется зеленоватая пленка, состоящая из CuCO3, Cu(OH)2 и различных сернистых соединений. Такая пленка, которая называется патиной, выполняет важную функцию защиты металла от дальнейшего разрушения.

Окисление начинает активно происходить и тогда, когда изделие подвергается нагреву. Если металл нагреть до температуры 375 градусов, то на его поверхности формируется оксид меди, если выше (375-1100 градусов) - то двухслойная окалина.

Медь достаточно легко реагирует с элементами, которые входят в группу галогенов. Если металл поместить в пары серы, то он воспламенится. Высокую степень родства он проявляет и к селену. Медь не вступает в реакцию с азотом, углеродом и водородом даже в условиях высоких температур.

Внимание заслуживает взаимодействие оксида меди с различными веществами. Так, при его взаимодействии с серной кислотой образуется сульфат и чистая медь, с бромоводородной и иодоводородной кислотой - бромид и иодид меди.

Иначе выглядят реакции оксида меди с щелочами, в результате которых образуется купрат. Получение меди, при котором металл восстанавливается до свободного состояния, осуществляют при помощи оксида углерода, аммиака, метана и других материалов.

Медь при взаимодействии с раствором солей железа переходит в раствор, при этом железо восстанавливается. Такая реакция используется для того, чтобы снять напыленный медный слой с различных изделий.

Одно- и двухвалентная медь способна создавать комплексные соединения, отличающиеся высокой устойчивостью. Такими соединениями являются двойные соли меди и аммиачные смеси. И те и другие нашли широкое применение в различных отраслях промышленности.

Области применения меди

Применение меди, как и наиболее схожего с ней по своим свойствам алюминия, хорошо известно - это производство кабельной продукции. Медные провода и кабели, характеризуются невысоким электрическим сопротивлением и особыми магнитными свойствами. Для производства кабельной продукции применяются виды меди, характеризующиеся высокой чистотой. Если в ее состав добавить даже незначительное количество посторонних металлических примесей, к примеру, всего 0,02% алюминия, то электрическая проводимость исходного металла уменьшится на 8–10%.

Невысокий и ее высокая прочность, а также способность поддаваться различным видам механической обработки - это те свойства, которые позволяют производить из нее трубы, успешно использующиеся для транспортировки газа, горячей и холодной воды, пара. Совершенно не случайно именно подобные трубы применяются в составе инженерных коммуникаций жилых и административных зданий в большинстве европейских стран.

Медь, кроме исключительно высокой электропроводности, отличается способностью хорошо проводить тепло. Благодаря этому свойству она успешно используется в составе следующих систем:

  • тепловые трубки;
  • кулеры, использующиеся для охлаждения элементов персональных компьютеров;
  • системы отопления и охлаждения воздуха;
  • системы, обеспечивающие перераспределение тепла в различных устройствах (теплообменники).

Металлические конструкции, в которых использованы медные элементы, отличаются не только небольшим весом, но и исключительной декоративностью. Именно это послужило причиной их активного использования в архитектуре, а также для создания различных интерьерных элементов.



Загрузка...