electricschool.ru

Найти функцию по первообразной. Первообразная и интегралы

Существует три основных правила нахождения первообразных функций. Они очень похожи на соответствующие правила дифференцирования.

Правило 1

Если F есть первообразная дл некоторой функции f, а G есть первообразная для некоторой функции g, то F + G будет являться первообразной для f + g.

По определению первообразной F’ = f. G’ = g. А так как эти условия выполняются, то по правилу вычисления производной для суммы функций будем иметь:

(F + G)’ = F’ + G’ = f + g.

Правило 2

Если F есть первообразная для некоторой функции f, а k - некоторая постоянная. Тогда k*F есть первообразная для функции k*f. Это правило следует из правила вычисления производной сложной функции.

Имеем: (k*F)’ = k*F’ = k*f.

Правило 3

Если F(x) есть некоторая первообразная для функции f(x), а k и b есть некоторые постоянные, причем k не равняется нулю, тогда (1/k)*F*(k*x+b) будет первообразной для функции f(k*x+b).

Данное правило следует из правила вычисления производной сложной функции:

((1/k)*F*(k*x+b))’ = (1/k)*F’(k*x+b)*k = f(k*x+b).

Рассмотрим несколько примеров применения этих правил:

Пример 1 . Найти общий вид первообразных для функции f(x) = x^3 +1/x^2. Для функции x^3 одной из первообразных будет функция (x^4)/4, а для функции 1/x^2 одной из первообразных будет являться функция -1/x. Используя первое правило, имеем:

F(x) = x^4/4 - 1/x +C.

Пример 2 . Найдем общий вид первообразных для функции f(x) = 5*cos(x). Для функции cos(x) одна из первообразных будет являться функция sin(x). Если теперь воспользоваться вторым правилом, то будем иметь:

F(x) = 5*sin(x).

Пример 3. Найти одну из первообразных для функции y = sin(3*x-2). Для функции sin(x) одной из первообразных будет являться функция -cos(x). Если теперь воспользоваться третьим правилом, то получим выражение для первообразной:

F(x) = (-1/3)*cos(3*x-2)

Пример 4 . Найти первообразную для функции f(x) = 1/(7-3*x)^5

Первообразной для функции 1/x^5 будет являться функция (-1/(4*x^4)). Теперь воспользовавшись третьим правилом, получим.

Первообразная

Определение первообразной функции

  • Функцию у= F (x) называют первообразной для функции у=f (x) на заданном промежутке Х, если для всех х Х выполняется равенство: F′(x) = f (x)

Можно прочесть двумя способами:

  1. f производная функции F
  2. F первообразная для функции f

Свойство первообразных

  • Если F(x) - первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С - произвольная постоянная.

Геометрическая интерпретация

  • Графики всех первообразных данной функции f (x) получаются из графика какой-либо одной первообразной параллельными переносами вдоль оси Оу .

Правила вычисления первообразных

  1. Первообразная суммы равна сумме первообразных . Если F(x) - первообразная для f(x) , а G(x) - первообразная для g(x) , то F(x) + G(x) - первообразная для f(x) + g(x) .
  2. Постоянный множитель можно выносить за знак производной . Если F(x) - первообразная для f(x) , и k - постоянная, то k·F(x) - первообразная для k·f(x) .
  3. Если F(x) - первообразная для f(x) , и k, b - постоянные, причём k ≠ 0 , то 1/k · F(kx + b) - первообразная для f(kx + b) .

Запомни!

Любая функция F(x) = х 2 + С , где С - произвольная постоянная, и только такая функция, является первообразной для функции f(x) = 2х .

  • Например:

    F"(x) = (х 2 + 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 – 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 –3)" = 2x = f(x);

Связь между графиками функции и ее первообразной:

  1. Если график функции f(x)>0 F(x) возрастает на этом промежутке.
  2. Если график функции f(x)<0 на промежутке, то график ее первообразной F(x) убывает на этом промежутке.
  3. Если f(x)=0 , то график ее первообразной F(x) в этой точке меняется с возрастающего на убывающий (или наоборот).

Для обозначения первообразной используют знак неопределённого интеграла, то есть интеграла без указания пределов интегрирования.

Неопределенный интеграл

Определение :

  • Неопределённым интегралом от функции f(x) называется выражение F(x) + С, то есть совокупность всех первообразных данной функции f(x). Обозначается неопределённый интеграл так: \int f(x) dx = F(x) + C
  • f(x) - называют подынтегральной функцией;
  • f(x) dx - называют подынтегральным выражением;
  • x - называют переменной интегрирования;
  • F(x) - одна из первообразных функции f(x);
  • С - произвольная постоянная.

Свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции: (\int f(x) dx)\prime= f(x) .
  2. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла: \int k \cdot f(x) dx = k \cdot \int f(x) dx .
  3. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx .
  4. Если k, b - постоянные, причём k ≠ 0, то \int f(kx + b) dx = \frac{1}{k} \cdot F(kx + b) + C .

Таблица первообразных и неопределенных интегралов

Функция

f(x)

Первообразная

F(x) + C

Неопределенные интегралы

\int f(x) dx = F(x) + C

0 C \int 0 dx = C
f(x) = k F(x) = kx + C \int kdx = kx + C
f(x) = x^m, m\not =-1 F(x) = \frac{x^{m+1}}{m+1} + C \int x{^m}dx = \frac{x^{m+1}}{m+1} + C
f(x) = \frac{1}{x} F(x) = l n \lvert x \rvert + C \int \frac{dx}{x} = l n \lvert x \rvert + C
f(x) = e^x F(x) = e^x + C \int e{^x }dx = e^x + C
f(x) = a^x F(x) = \frac{a^x}{l na} + C \int a{^x }dx = \frac{a^x}{l na} + C
f(x) = \sin x F(x) = -\cos x + C \int \sin x dx = -\cos x + C
f(x) = \cos x F(x) =\sin x + C \int \cos x dx = \sin x + C
f(x) = \frac{1}{\sin {^2} x} F(x) = -\ctg x + C \int \frac {dx}{\sin {^2} x} = -\ctg x + C
f(x) = \frac{1}{\cos {^2} x} F(x) = \tg x + C \int \frac{dx}{\sin {^2} x} = \tg x + C
f(x) = \sqrt{x} F(x) =\frac{2x \sqrt{x}}{3} + C
f(x) =\frac{1}{ \sqrt{x}} F(x) =2\sqrt{x} + C
f(x) =\frac{1}{ \sqrt{1-x^2}} F(x)=\arcsin x + C \int \frac{dx}{ \sqrt{1-x^2}}=\arcsin x + C
f(x) =\frac{1}{ \sqrt{1+x^2}} F(x)=\arctg x + C \int \frac{dx}{ \sqrt{1+x^2}}=\arctg x + C
f(x)=\frac{1}{ \sqrt{a^2-x^2}} F(x)=\arcsin \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2-x^2}} =\arcsin \frac {x}{a}+ C
f(x)=\frac{1}{ \sqrt{a^2+x^2}} F(x)=\arctg \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2+x^2}} = \frac {1}{a} \arctg \frac {x}{a}+ C
f(x) =\frac{1}{ 1+x^2} F(x)=\arctg + C \int \frac{dx}{ 1+x^2}=\arctg + C
f(x)=\frac{1}{ \sqrt{x^2-a^2}} (a \not= 0) F(x)=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C \int \frac{dx}{ \sqrt{x^2-a^2}}=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C
f(x)=\tg x F(x)= - l n \lvert \cos x \rvert + C \int \tg x dx =- l n \lvert \cos x \rvert + C
f(x)=\ctg x F(x)= l n \lvert \sin x \rvert + C \int \ctg x dx = l n \lvert \sin x \rvert + C
f(x)=\frac{1}{\sin x} F(x)= l n \lvert \tg \frac{x}{2} \rvert + C \int \frac {dx}{\sin x} = l n \lvert \tg \frac{x}{2} \rvert + C
f(x)=\frac{1}{\cos x} F(x)= l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C \int \frac {dx}{\cos x} = l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C


Формула Ньютона–Лейбница

Пусть f (х) данная функция, F её произвольная первообразная.

\int_{a}^{b} f(x) dx =F(x)|_{a}^{b} = F(b) - F(a)

где F(x) - первообразная для f(x)

То есть, интеграл функции f (x) на интервале равен разности первообразных в точках b и a .

Площадь криволинейной трапеции

Криволинейной трапецией называется фигура, ограниченная графиком неотрицательной и непрерывной на отрезке функции f , осью Ox и прямыми x = a и x = b .

Площадь криволинейной трапеции находят по формуле Ньютона-Лейбница:

S= \int_{a}^{b} f(x) dx

Неопределенный интеграл

Основной задачей дифференциального исчисления было вычисление производной или дифференциала заданной функции. Интегральное исчисление, к изучению которого мы переходим, решает обратную задачу, а именно, отыскания самой функции по ее производной или дифференциалу. То есть, имея dF(х)= f(х)d (7.1) или F ′(х)= f(х) ,

где f(х) - известная функция, надо найти функцию F(х) .

Определение: Функция F(х) называется первообразной функции f(х) на отрезке , если во всех точках этого отрезка выполняется равенство: F′(х) = f(х) или dF(х)= f(х)d .

Например , одной из первообразных функций для функции f(х)=3х 2 будет F(х)= х 3 , т.к. (х 3)′=3х 2 . Но первоообразной для функции f(х)=3х 2 будет также и функции и , т.к. .

Итак, данная функция f(х)=3х 2 имеет бесконечное множество первоообразных, каждая из которых отличается лишь на постоянное слагаемое. Покажем, что этот результат имеет место и в общем случае.

Теорема Две различные первообразные одной и той же функции, определенной в некотором промежутке, отличаются одна от другой на этом промежутке на постоянное слагаемое.

Доказательство

Пусть функция f(х) определена на промежутке (a¸b) и F 1 (х) и F 2 (х) - первообразные, т.е. F 1 ′(х)= f(х) и F 2 ′(х)= f(х) .

Тогда F 1 ′(х)=F 2 ′(х)Þ F 1 ′(х) - F 2 ′(х) = (F 1 ′(х) - F 2 (х))′= 0 . Þ F 1 (х) - F 2 (х)=С

Отсюда, F 2 (х) = F 1 (х)+С

где С - константа (здесь использовано следствие из теоремы Лагранжа).

Теорема, таким образом, доказана.

Геометрическая иллюстрация . Если у = F 1 (х) и у = F 2 (х) – первообразные одной и той же функции f(х) , то касательная к их графикам в точках с общей абсциссой х параллельны между собой (рис. 7.1).

В таком случае расстояние между этими кривыми вдоль оси Оу остается постоянным F 2 (х) - F 1 (х)=С , то есть эти кривые в некотором понимании "параллельны" одна другой.

Следствие .

Прибавляя к какой-то первообразной F(х) для данной функции f(х) , определенной на промежутке Х , все возможные постоянные С , мы получим все возможные первообразные для функции f(х) .

Итак, выражение F(х)+С , где , а F(х) – некоторая первообразная функции f(х) включает все возможные первообразные для f(х) .

Пример 1. Проверить, являются ли функции первообразными для функции

Решение:

Ответ : первообразными для функции будут функции и

Определение: Если функция F(х) является некоторой первообразной для функции f(х), то множество всех первообразных F(х)+ С называют неопределенным интегралом от f(х) и обозначают:

∫f(х)dх.

По определению:

f(х) - подынтегральная функция,

f(х)dх - подынтегральное выражение

Из этого следует, чтоо неопределенный интеграл является функцией общего вида, дифференциал которой равен подынтегральному выражению, а производная от которой по переменной х равна подынтегральной функции во всех точках .

С геометрической точки зрения неопределенный интеграл представляет собой семейство кривых, каждая из которых получается путем сдвига одной из кривых параллельно самой себе вверх или вниз, то есть вдоль оси Оу (рис. 7.2).

Операция вычисления неопределенного интеграла от некоторой функции называется интегрированием этой функции.

Отметим, что если производная от элементарной функции всегда является элементарной функцией, то первоообразная от элементарной функции может не представляться при помощи конечного числа элементарных функций.

Рассмотрим теперь свойства неопределенного интеграла .

Из определения 2 вытекает:

1. Производная от неопределенного интеграла равна подынтегральной функции, то есть, если F′(х) = f(х) , то

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению

. (7.4)

Из определения дифференциала и свойства (7.3)

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, то есть (7.5)

Урок и презентация на тему: "Первообразная функция. График функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Алгебраические задачи с параметрами, 9–11 классы
"Интерактивные задания на построение в пространстве для 10 и 11 классов"

Первообразная функция. Введение

Ребята, вы умеем находить производные функций, используя различные формулы и правила. Сегодня мы будем изучать операцию, обратную вычислению производной. Понятие производной часто применяется в реальной жизни. Напомню: производная – это скорость изменения функции в конкретной точке. Процессы, связанные с движением и скоростью, хорошо описываются в этих терминах.

Давайте рассмотрим вот такую задачу: "Скорость движения объекта, по прямой, описывается формулой $V=gt$. Требуется восстановить закон движения.
Решение.
Мы хорошо знаем формулу: $S"=v(t)$, где S - закон движения.
Наша задача сводится к поиску функции $S=S(t)$, производная которой равна $gt$. Посмотрев внимательно, можно догадаться, что $S(t)=\frac{g*t^2}{2}$.
Проверим правильность решения этой задачи: $S"(t)=(\frac{g*t^2}{2})"=\frac{g}{2}*2t=g*t$.
Зная производную функции, мы нашли саму функцию, то есть выполнили обратную операцию.
Но стоит обратить внимание вот на такой момент. Решение нашей задачи требует уточнения, если к найденной функции прибавить любое число (константу), то значение производной не изменится: $S(t)=\frac{g*t^2}{2}+c,c=const$.
$S"(t)=(\frac{g*t^2}{2})"+c"=g*t+0=g*t$.

Ребята, обратите внимание: наша задача имеет бесконечное множество решений!
Если в задаче не задано начальное или какое-то другое условие, не забывайте прибавлять константу к решению. Например, в нашей задаче может быть задано положение нашего тела в самом начале движения. Тогда вычислить константу не трудно, подставив ноль в полученное уравнение, получим значение константы.

Как называется такая операция?
Операция обратная дифференцированию называется – интегрированием.
Нахождение функции по заданной производной – интегрирование.
Сама функция будет называться первообразной, то есть образ, то из чего была получена производная функции.
Первообразную принято записывать большой буквой $y=F"(x)=f(x)$.

Определение. Функцию $y=F(x)$ называется первообразной функции $у=f(x)$ на промежутке Х, если для любого $хϵХ$ выполняется равенство $F’(x)=f(x)$.

Давайте составим таблицу первообразных для различных функции. Ее надо распечатать в качестве памятки и выучить.

В нашей таблице никаких начальных условий задано не было. Значит к каждому выражению в правой части таблицы следует прибавить константу. Позже мы уточним это правило.

Правила нахождения первообразных

Давайте запишем несколько правил, которые нам помогут при нахождении первообразных. Все они похожи на правила дифференцирования.

Правило 1. Первообразная суммы равна сумме первообразных. $F(x+y)=F(x)+F(y)$.

Пример.
Найти первообразную для функции $y=4x^3+cos(x)$.
Решение.
Первообразная суммы равна сумме первообразных, тогда надо найти первообразную для каждой из представленных функций.
$f(x)=4x^3$ => $F(x)=x^4$.
$f(x)=cos(x)$ => $F(x)=sin(x)$.
Тогда первообразной исходной функции будет: $y=x^4+sin(x)$ или любая функция вида $y=x^4+sin(x)+C$.

Правило 2. Если $F(x)$ – первообразная для $f(x)$, то $k*F(x)$ – первообразная для функции $k*f(x)$. (Коэффициент можем спокойно выносить за функцию).

Пример.
Найти первообразные функций:
а) $y=8sin(x)$.
б) $y=-\frac{2}{3}cos(x)$.
в) $y={3x}^2+4x+5$.
Решение.
а) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная исходной функции примет вид: $y=-8cos(x)$.

Б) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная исходной функции примет вид: $y=-\frac{2}{3}sin(x)$.

В) Первообразной для $x^2$ служит $\frac{x^3}{3}$. Первообразной для x служит $\frac{x^2}{2}$. Первообразной для 1 служит x. Тогда первообразная исходной функции примет вид: $y=3*\frac{x^3}{3}+4*\frac{x^2}{2}+5*x=x^3+2x^2+5x$.

Правило 3. Если $у=F(x)$ - первообразная для функции $y=f(x)$, то первообразная для функции $y=f(kx+m)$ служит функция $y=\frac{1}{k}*F(kx+m)$.

Пример.
Найти первообразные следующих функций:
а) $y=cos(7x)$.
б) $y=sin(\frac{x}{2})$.
в) $y={-2x+3}^3$.
г) $y=e^{\frac{2x+1}{5}}$.
Решение.
а) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная для функции $y=cos(7x)$ будет функция $y=\frac{1}{7}*sin(7x)=\frac{sin(7x)}{7}$.

Б) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная для функции $y=sin(\frac{x}{2})$ будет функция $y=-\frac{1}{\frac{1}{2}}cos(\frac{x}{2})=-2cos(\frac{x}{2})$.

В) Первообразной для $x^3$ служит $\frac{x^4}{4}$, тогда первообразная исходной функции $y=-\frac{1}{2}*\frac{{(-2x+3)}^4}{4}=-\frac{{(-2x+3)}^4}{8}$.

Г) Слегка упростим выражение в степени $\frac{2x+1}{5}=\frac{2}{5}x+\frac{1}{5}$.
Первообразной экспоненциальной функции является сама экспоненциальная функция. Первообразной исходной функции будет $y=\frac{1}{\frac{2}{5}}e^{\frac{2}{5}x+\frac{1}{5}}=\frac{5}{2}*e^{\frac{2x+1}{5}}$.

Теорема. Если $у=F(x)$ - первообразная для функции $y=f(x)$ на промежутке Х, то у функции $y=f(x)$ бесконечно много первообразных, и все они имеют вид $у=F(x)+С$.

Если во всех примерах, которые были рассмотрены выше, требовалось бы найти множество всех первообразных, то везде следовало бы прибавить константу С.
Для функции $y=cos(7x)$ все первообразные имеют вид: $y=\frac{sin(7x)}{7}+C$.
Для функции $y=(-2x+3)^3$ все первообразные имеют вид: $y=-\frac{{(-2x+3)}^4}{8}+C$.

Пример.
По заданному закону изменения скорости тела от времени $v=-3sin(4t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 1,75.
Решение.
Так как $v=S’(t)$, нам надо найти первообразную для заданной скорости.
$S=-3*\frac{1}{4}(-cos(4t))+C=\frac{3}{4}cos(4t)+C$.
В этой задаче дано дополнительное условие - начальный момент времени. Это значит, что $t=0$.
$S(0)=\frac{3}{4}cos(4*0)+C=\frac{7}{4}$.
$\frac{3}{4}cos(0)+C=\frac{7}{4}$.
$\frac{3}{4}*1+C=\frac{7}{4}$.
$C=1$.
Тогда закон движения описывается формулой: $S=\frac{3}{4}cos(4t)+1$.

Задачи для самостоятельного решения

1. Найти первообразные функций:
а) $y=-10sin(x)$.
б) $y=\frac{5}{6}cos(x)$.
в) $y={4x}^5+{3x}^2+5x$.
2. Найти первообразные следующих функций:
а) $y=cos(\frac{3}{4}x)$.
б) $y=sin(8x)$.
в) $y={(7x+4)}^4$.
г) $y=e^{\frac{3x+1}{6}}$.
3. По заданному закону изменения скорости тела от времени $v=4cos(6t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 2.

Рассмотрим движение точки вдоль прямой. Пусть за время t от начала движения точка прошла путь s(t). Тогда мгновенная скорость v(t) равна производной функции s(t), то есть v(t) = s"(t).

В практике встречается обратная задача: по заданной скорости движения точки v(t) найти пройденный ею путь s(t) , то есть найти такую функцию s(t), производная которой равна v(t) . Функцию s(t), такую, что s"(t) = v(t) , называют первообразной функции v(t).

Например, если v(t) = аt , где а – заданное число, то функция
s(t) = (аt 2) / 2 v(t), так как
s"(t) = ((аt 2) / 2) " = аt = v(t).

Функция F(x) называется первообразной функции f(x) на некотором промежутке, если для всех х из этого промежутка F"(x) = f(x).

Например, функция F(x) = sin x является первообразной функции f(x) = cos x, так как (sin x)" = cos x ; функция F(x) = х 4 /4 является первообразной функции f(x) = х 3 , так как (х 4 /4)" = х 3 .

Рассмотрим задачу.

Задача .

Доказать, что функции х 3 /3, х 3 /3 + 1, х 3 /3 – 4 являются первообразной одной и той же функции f(x) = х 2 .

Решение .

1) Обозначим F 1 (x) = х 3 /3, тогда F" 1 (x) = 3 ∙ (х 2 /3) = х 2 = f(x).

2) F 2 (x) = х 3 /3 + 1, F" 2 (x) = (х 3 /3 + 1)" = (х 3 /3)" + (1)"= х 2 = f(x).

3) F 3 (x) = х 3 /3 – 4, F" 3 (x) = (х 3 /3 – 4)" = х 2 = f(x).

Вообще любая функция х 3 /3 + С, где С – постоянная, является первообразной функции х 2 . Это следует из того, что производная постоянной равна нулю. Этот пример показывает, что для заданной функции ее первообразная определяется неоднозначно.

Пусть F 1 (x) и F 2 (x) – две первообразные одной и той же функции f(x).

Тогда F 1 "(x) = f(x) и F" 2 (x) = f(x).

Производная их разности g(х) = F 1 (x) – F 2 (x) равна нулю, так как g"(х) = F" 1 (x) – F" 2 (x) = f(x) – f(x) = 0.

Если g"(х) = 0 на некотором промежутке, то касательная к графику функции у = g(х) в каждой точке этого промежутка параллельна оси Ох. Поэтому графиком функции у = g(х) является прямая, параллельная оси Ох, т.е. g(х) = С, где С – некоторая постоянная. Из равенств g(х) = С, g(х) = F 1 (x) – F 2 (x) следует, что F 1 (x) = F 2 (x) + С.

Итак, если функция F(x) является первообразной функции f(x) на некотором промежутке, то все первообразные функции f(x) записываются в виде F(x) + С, где С – произвольная постоянная.

Рассмотрим графики всех первообразных заданной функции f(x). Если F(x) – одна из первообразных функции f(x), то любая первообразная этой функции получается прибавлением к F(x) некоторой постоянной: F(x) + С. Графики функций у = F(x) + С получаются из графика у = F(x) сдвигом вдоль оси Оу. Выбором С можно добиться того, чтобы график первообразной проходил через заданную точку.

Обратим внимание на правила нахождения первообразных.

Вспомним, что операцию нахождения производной для заданной функции называют дифференцированием . Обратную операцию нахождения первообразной для данной функции называют интегрированием (от латинского слова «восстанавливать» ).

Таблицу первообразных для некоторых функций можно составить, используя таблицу производных. Например, зная, что (cos x)" = -sin x, получаем (-cos x)" = sin x , откуда следует, что все первообразные функции sin x записываются в виде -cos x + С , где С – постоянная.

Рассмотрим некоторые значения первообразных.

1) Функция: х р, р ≠ -1 . Первообразная: (х р+1) / (р+1) + С.

2) Функция: 1/х, х > 0. Первообразная: ln x + С.

3) Функция: х р, р ≠ -1 . Первообразная: (х р+1) / (р+1) + С.

4) Функция: е х . Первообразная: е х + С.

5) Функция: sin x . Первообразная: -cos x + С.

6) Функция: (kx + b) p , р ≠ -1, k ≠ 0. Первообразная: (((kx + b) p+1) / k(p+1)) + С.

7) Функция: 1/(kx + b), k ≠ 0 . Первообразная: (1/k) ln (kx + b)+ С.

8) Функция: е kx + b , k ≠ 0 . Первообразная: (1/k) е kx + b + С.

9) Функция: sin (kx + b), k ≠ 0 . Первообразная: (-1/k) cos (kx + b) .

10) Функция: cos (kx + b), k ≠ 0. Первообразная: (1/k) sin (kx + b).

Правила интегрирования можно получить с помощью правил дифференцирования . Рассмотрим некоторые правила.

Пусть F(x) и G(x) – первообразные соответственно функций f(x) и g(x) на некотором промежутке. Тогда:

1) функция F(x) ± G(x) является первообразной функции f(x) ± g(x);

2) функция аF(x) является первообразной функции аf(x).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.



Загрузка...