electricschool.ru

Митохондриальная днк. О митохондриальной еве и генетическом разнообразии современного человечества Митохондриальных генов

П.П.Гаряев

ЛИНГВИСТИКО-ВОЛНОВОЙ ГЕНОМ. ТЕОРИЯ И ПРАКТИКА.
(201 стр., 32 рисунка, 4 таблицы, 12 графиков, 36 фотографий)

Московский Государственный Технический Университет им. Н.Э.Баумана

Институт Квантовой Генетики

В книге д.б.н., акад. РАМТН и РАЕН П.П.Гаряева «Волновой геном. Теория и практика» затронуты фундаментальные вопросы генетического кода, которые связаны со структурой, функционированием. Понятно, что мы еще далеки от полного решения всех вопросов генетического кода, но идеи проф. Гаряева П.П. и его коллег дают возможность увидеть нечто совершенно новое в работе хромосомного аппарата живых клеток. Видится принципиально новое научно-практическое направление, которое можно было бы назвать «генетико-волновая навигация и управление в биосистемах». Оно подано автором в рамках теоретических моделей, подтверждаемых собственными и независимыми экспериментальными исследованиями. Квантовая составляющая генетической работы клеток представляется чрезвычайно важной. Ясно, что гигантским по масштабам и сложности метаболизмом клеток, тканей и организма в целом необходимо управлять. В связи с этим автор выдвигает новую и существенную идею генетического квантового биокомпьютинга. Такой подход интересен и для опторадиоэлектроники, радиотехники, компьютинга, систем навигации и управления. Более того, волновые механизмы работы клеток имеют прямое отношение к наноэлектронике. Живые организмы наглядно показывают нам примеры нанобиотехнологий, эффективно используя для собственной волновой биокомпьютерной регуляции такие активно работающие наноструктуры как ферменты, рибосомы, митохондрии, мембраны, цитоскелет и хромосомы. Нанотехнические механизмы работы клеток и их генетического аппарата нуждаются в теоретико-биологическом осмыслении и физико-математическом анализе, который позволяет создать, в том числе, неизвестные ранее принципиально новые лазерно-радиоволновые технологии генетического управления метаболизмом многоклеточных организмов. Результаты использования таких технологий коллективом П.П.Гаряева впечатляют. Авторами корректно и развернуто продемонстрирована дальняя (многокилометровая) волновая передача реальной управляющей генетической информации от Донора (живой ткани) к Реципиенту (организму). Такая передача до недавнего времени считалась принципиально невозможной. Теперь это фундаментальный факт. Появляется возможность создания совершенной уникальной молекулярно-оптико-радиоэлектронной аппаратуры, которая сможет осуществлять сложнейшие навигационно-регуляторные функции для позитивного управления генетико-физиологическими функциями организмов. Рассматривается проблема по созданию генетического лазера. Факт лазерной накачки ДНК и хромосом ‘in vitro’ акад. П.П.Гаряевым и его коллегами уже продемонстрирован и опубликован в 1996 г. и подтвержден работами японских исследователей в 2002 г. Такой лазер будет выполнять многие, ранее непонятные функции генетического аппарата для решения проблем биологии, медицины и сельского хозяйства. Другая сторона такой работы – это возможность применения когерентных состояний и излучений живых клеток и их информационных структур для проектирования биокомпьютеров, работающих на принципах голографии, солитоники и квантовой нелокальности. Фактически прообраз такого биокомпьютера создан коллективом П. Гаряева, что и позволило получить уникальные результаты по квантовой трансляции генов и дальнему волновому генетическому управлению. Использование хромосомных лазеров и биокомпьютеров не ограничивается сказанным и распространяется шире за пределы биосистем – на космическую связь, управление сверхсложными техническим процессами, авиационную навигацию и т.д. В работе выделяется ряд нерешенных задач, в том числе исследование волновых реплик ДНК и лазерно-радиоволновых процессов, имеющими место при снятии и передаче квантовой биоинформации от Донора к Реципиенту. Считаю, что выход в свет монографии П.П. Гаряева будет способствовать дальнейшему процессу дознания одной из божественных загадок – загадок генетического кода и приведет к применению новых идей на благо человечества.

В.А. Матвеев
Доктор технических наук,
Профессор МГТУ им. Н.Э. Баумана,
Декан факультета «Информатика и системы управления»,
Заслуженный деятель науки РФ,
Лауреат премий Правительства РФ и города Москвы

Скачать книгу можно тут.

05.05.2015 13.10.2015

Все сведения о строении организма человека и его предрасположенности к болезням зашифрованы в виде молекул ДНК. Основная информация находится в ядрах клеток. Однако 5% ДНК локализовано в митохондриях.

Что называют митохондриями?

Митохондрии являются клеточными органеллами эукариот, которые нужны для того, чтобы осуществить превращение энергии, заключенной в питательных веществах в соединения, которые могут усваивать клетки. Поэтому они нередко называются «энергетическими станциями», ведь без них существование организма невозможно.
Своя генная информация у данных органелл появилась вследствие того, что ранее они представляли собой бактерии. После их попадания в клетки организма-хозяина, они не смогли сохранить свой геном, при этом часть собственного генома они передали клеточному ядру организма-хозяина. Поэтому сейчас их ДНК (мтДНК) содержит только часть, а именно 37 генов от исходного количества. Главным образом, в них зашифрован механизм трансформации глюкозы до соединений — углекислый газ и вода с получением энергии (АТФ и НАДФ), без которой и невозможно существование организма хозяина.

В чем уникальность мтДНК?

Главное свойство, присущее митохондриальной ДНК, заключается в возможности наследовании ее только по линии матери. При этом все дети (мужчины или женщины) могут получить митохондрии от яйцеклетки. Происходит это благодаря тому, что женские яйцеклетки содержат более высокое количество данных органелл (до 1000 раз), чем мужские сперматозоиды. Вследствие этого дочерний организм получает их только от своей матери. Поэтому и унаследование их от отцовской клетки совершенно невозможно.
Известно, что гены митохондрий передались нам из далекого прошлого — от нашей проматери — «митохондриальной Евы», являющейся общим предком всех людей планеты по материнской линии. Поэтому данные молекулы считаются самым идеальным объектом при генетических экспертизах для установления родства по линии матери.

Как происходит определение родства?

Митохондриальные гены имеют множество точечных мутаций, благодаря чему они очень вариабельны. Это и позволяет установить родство. На генетической экспертизе с использованием специальных генетических анализаторов – секвенаторов, определяются индивидуальные точечные нуклеотидные изменения генотипа, их сходство или различие. У людей, не имеющих родственных связей по линии матери геномы митохондрий различаются существенно.
Определение родства возможно благодаря удивительным характеристикам митохондриального генотипа:
они не подвержены рекомбинациям, поэтому молекулы изменяются лишь в процессе мутирования, который может происходить в течение тысячелетия;
возможность выделения из любых биологических материалов;
при недостатке биоматериала или деградации ядерного генома, мтДНК может стать единственным источником для проведения анализов, благодаря огромному количеству ее копий;
вследствие большого количества мутаций по сравнению с ядерными генами клеток, достигается высокая точность при проведении анализа генного материала.

Что возможно установить при генной экспертизе?

Генная экспертиза мтДНК поможет при диагностике следующих случаев.
1. Для установления родства между людьми по линии матери: между дедом (или бабушкой) с внуком, братом с сестрой, дядей (или тетей) с племянником.
2. При анализе небольшого количества биоматериала. Ведь мтДНК содержится у каждой клетки в значительном количестве (100 — 10 000), тогда как ядерная — только по 2 копии у каждой 23 имеющихся хромосом.
3. При идентификации древнего биоматериала – сроком хранения более, чем тысячелетнего периода. Именно благодаря данному свойству ученые смогли идентифицировать генный материал из останков членов семьи Романовых.
4. При отсутствии иного материала, ведь даже один волос содержит значительное количество мтДНК.
5. При определении принадлежности генов к генеалогическим ветвям человечества (африканской, американской, ближневосточной, европейской гаплогруппе и другим), благодаря чему возможно определение происхождения человека.

Митохондриальные заболевания и их диагностика

Митохондриальные заболевания проявляются в основном за счет дефектов мтДНК клеток, связанных со значительной подверженности данных органелл к мутациям. Сегодня насчитывается уже порядка 400 болезней, связанных с их дефектами.
В норме каждая клетка могут включать как нормальные митохондрии, так и с определенными нарушениями. Часто признаки заболевания при этом никак не проявляют себя. Однако при ослаблении процесса синтеза энергии в них наблюдается проявление таких болезней. Данные заболевания, прежде всего, связаны с нарушением мышечной или нервной систем. Как правило, при таких болезнях наблюдается позднее начало клинических проявлений. Частота возникновения данных болезней составляет 1:200 человек. Известно, что наличие мутаций митохондрий способно вызвать нефротический синдром при беременности женщины и даже внезапную смерть младенца. Поэтому, исследователями предпринимаются активные попытки решения данных проблем, связанных с лечением и передачей генетических заболеваний этого типа от матерей к детям.

Как связано старение с митохондриями?

Реорганизацию генома данных органелл обнаружили и при анализе механизма старения организма. Сотрудниками Университета Хопкинса опубликованы результаты, проведенные при наблюдениях за показателями крови 16000 пожилых людей из Америки, демонстрирующие, что снижение количества мтДНК было напрямую взаимосвязано с возрастом пациентов.

Большинство из рассмотренных вопросов сегодня стало основой новой науки – «митохондриальной медицины», сформировавшейся в виде отдельного направления в 20 столетии. Прогнозирование и лечение заболеваний, связанных с нарушением генома митохондрий, генетическая диагностика – вот первостепенные её задачи.

Об авторах

Наталия Васильевна Сернова — кандидат физико-математических наук, магистр протеомики и биоинформатики Женевского университета. Научные интересы: биоинформатика, регуляция транскрипции, сравнительная геномика, эволюция млекопитающих.

Михаил Сергеевич Гельфанд — доктор биологических наук, член Европейской академии, заместитель директора Института проблем передачи информации им. А. А. Харкевича РАН, профессор факультета биоинженерии и биоинформатики Московского государственного университета им. М. В. Ломоносова. Область научных интересов — биоинформатика, сравнительная и функциональная геномика, молекулярная эволюция, системная биология, метагеномика.

Практически во всех клетках эукариот есть митохондрии - органеллы, которые нужны в первую очередь для синтеза АТФ. История симбиоза бактерий, родственных риккетсиям, и предка эукариот, в результате которого возникли митохондрии, очень интересна, однако здесь речь пойдет не о ней. Для нас сейчас будет важно лишь то, что у митохондрий есть свой собственный геном (у млекопитающих его размер 15–20 тыс. пар нуклеотидов), что у животных он передается строго по материнской линии и что в каждой клетке присутствуют десятки и даже тысячи митохондрий, а стало быть, в любом образце количество копий митохондриального генома на несколько порядков превышает число копий любого фрагмента ядерного генома. Это особенно существенно при анализе древних образцов, в которых сохранилось мало неповрежденной ДНК.

Мы будем обсуждать интрогрессию митохондриальных геномов. Интрогрессия - это форма гибридизации, при которой гены одного вида проникают в генофонд другого. В результате образуются гибриды первого поколения, способные к возвратному скрещиванию с одним или обоими родительскими видами. Если возвратное скрещивание происходит многократно в последовательных поколениях, то может возникнуть поток вариантов некоторых генов от одного вида к другому. Такой прием часто используется в селекции, когда требуется передать некий признак от одного вида другому, например устойчивость к болезням от дикого вида к культурному сорту: производят многократные возвратные скрещивания с культурным сортом, а отбор ведут по данному признаку. Постепенно в большинстве локусов остаются только аллели культурного сорта, а локусы, от которых зависит желаемый признак, наследуются от дикого вида - и в результате получается новый устойчивый сорт.

Однако интрогрессия может происходить и в результате естественной гибридизации. Известно, что межвидовая гибридизация характерна для 10% видов животных, в частности для 6% видов млекопитающих . Если все потомки родителей, принадлежащих к разным видам, далее скрещиваются с представителями только одного из них, причем многократно в ряде последовательных поколений, то возникает однонаправленный поток вариантов генов от вида, который представляет собой донора, в популяционную систему, служащую реципиентом. Таким образом, интрогрессия - это такая гибридизация, при которой поток генов и рекомбинация доходят до видового уровня. При этом из-за упомянутых особенностей наследования митохондриального генома у животных и из-за отсутствия рекомбинации их митохондриальной ДНК оказывается легко следить за интрогрессией именно митохондриальных генов. Особый интерес представляет так называемый митохондриальный захват, когда в какой-либо популяции все митохондриальные геномы происходят от одного вида, а все ядерные - от другого. Следует отметить, что это довольно строгое определение: никогда нельзя гарантировать, что в геноме гибридов не сохранилось фрагмента ядерного генома второго вида хотя бы у части особей, поскольку для этого надо проводить подробное генотипирование большого числа ядерных геномов, что долго и дорого.

Интрогрессия митохондриальных геномов ведет к тому, что филогении, построенные по митохондриальным и ядерным маркерам, оказываются несогласованными. В недавнем обзоре обобщили 126 случаев полной и неполной митохондриальной интрогрессии у животных. Большинство из этих случаев описано уже в XXI веке. Причины интрогрессии могут быть разными: селективное преимущество, демографические особенности, смещение зоны гибридизации, влияние человека, у насекомых - заражение вольбахией и разнообразные связанные с этим эффекты, например искажение соотношения полов. Чаще всего, по-видимому, действует комбинация причин. Особый интерес представляют случаи полной интрогрессии, когда на всем ареале подавляющее большинство особей имеет митохондрии, геномы которых практически совпадают с митохондриальными геномами другого вида. Такого не замечали у земноводных, зато наблюдали четыре подобных случая у птиц, пять - у рыб и два - у насекомых. Четыре случая было отмечено у млекопитающих: митохондриальный геном тара (Hemitragus jemlahicus ) у предка диких европейских коз Capra spp. , белохвостого оленя (Odocoileus virginianus ) у чернохвостого (O. hemionus ) в Северной Америке , расы Carlit обыкновенной землеройки, или бурозубки (Sorex araneus ), у иберийской (S. granarius ) и, наконец, бурого медведя (Ursus arctos ) у белого (U. maritimus ) . О медведях речь пойдет ниже, а сначала обсудим слонов.

Африканские слоны: один или два вида?

По морфологическим особенностям африканские слоны делятся на две группы: саванные (Loxodonta africana ), которые живут в сухой саванне, и лесные (L. cyclotis ), которые обитают во влажных лесах. Вопрос о статусе этих групп до сих пор остается открытым. Некоторые авторы считают эти группы подвидами , в то время как другие относят их к разным видам [8–13 ] . Расхождение лесных и саванных слонов произошло от 2,5 млн лет назад (по ядерной ДНК) до 5,5 млн лет назад (по митохондриальной ДНК) .

Ареалы этих двух групп не разделены, и существует обширная зона контакта, на которой возможна гибридизация. В ряде популяций, например, в регионе Серенгети в Восточной Африке, большинство саванных слонов имеют митохондриальный геном лесных . Это объясняют межвидовыми скрещиваниями лесных самок с саванными самцами с последующей интрогрессией. Возможный сценарий, который учитывает хорошо изученные особенности социального поведения африканских слонов , выглядит следующим образом [8–10 ].

Слоны живут большими стадами - до нескольких десятков особей. Стадо включает только самок разного возраста и их неполовозрелое потомство и возглавляется старшей самкой-матриархом. Все слоны в стаде родственны по материнской линии и имеют одинаковый митохондриальный геном. Самцы слонов, достигшие половой зрелости (12 лет), изгоняются из стада. Они тоже могут объединяться в группы, которые состоят из самцов разного возраста и где главенствуют крупные пожилые самцы.

Когда самка достигает репродуктивного возраста (10–12 лет) и у нее начинается эстральный цикл, она уходит из стада на период до нескольких недель для встречи с самцом. Затем возвращается в материнское стадо и через 22 месяца рожает детеныша, которого выкармливает около двух лет, т.е. в течение почти четырех лет самка репродуктивного возраста не готова к новому контакту. Для спаривания самки предпочитают крупных самцов.

Рассредоточение слонов по группам не приводит к полному разделению родственников мужского и женского пола, поэтому слоны способны распознавать сородичей. Учитывая, что саванные самцы предпочитают избегать инбридинга и что они крупнее лесных слонов и репродуктивно над ними доминируют, а эстральные самки встречаются редко, не исключено, что в таких условиях лесные самки заполняют освободившуюся нишу и составляют конкуренцию саванным самкам. Здесь уместно вспомнить, что корреляция между внутривидовым потоком генов и межвидовым отрицательна .

После спаривания с саванным самцом лесная самка возвращается в материнское стадо лесных слонов. Через 22 месяца на свет появляется гибрид с митохондриальным геномом лесных слонов и ядерной ДНК саванных и лесных слонов поровну. Гибридная самка начнет передавать митохондриальный геном следующим поколениям по материнской линии. Каждое возвратное скрещивание лесных или гибридных самок с саванными самцами будет уменьшать долю ядерной ДНК лесного слона наполовину. И через много поколений у гибридов ядерная ДНК саванного слона полностью заменит ядерную ДНК лесного слона. К тому же саванные самцы почти вдвое крупнее лесных, а значит, пользуются преимуществом при спаривании в том числе и с лесными и гибридными самками. Кроме того, гибридные самцы могут обладать пониженной плодовитостью согласно правилу Холдейна: если при скрещивании разных подвидов или рас жизнеспособность потомства зависит от пола, более редким (или вообще отсутствующим) будет гетерогаметный пол, то есть у млекопитающих - самцы .

Эта модель хорошо объясняет, почему в областях, далеких от зоны контакта двух групп, практически нет ни слонов с промежуточной морфологией, ни особей со смешанным - саванным с лесным - ядерным геномом, в том числе среди саванных слонов с митохондриальным геномом лесного типа. Однако она наталкивается на противоречие: поскольку самки слона возвращаются в материнское стадо, гибридные самки оказываются в стаде с лесными, а значит, не могут передать свою митохондриальную ДНК саванным слонам. Тем более не могут этого сделать гибридные самцы, ведь митохондриальный геном наследуется только по материнской линии.

Возможно, этот парадокс объясняется изменениями популяционной структуры и ареала слонов под влиянием климатических изменений и деятельности человека - хозяйственной и охоты, в том числе браконьерской. Есть наблюдения, что, когда численность натального стада у саванных слонов по тем или иным причинам падает, матриарх может принимать самок из других, неродственных, групп . Так, например, в Уганде, где популяции слонов существенно сократились из-за браконьерства, самки с разными митохондриальными гаплотипами сформировали новые социальные группы . Кроме того, раз гибридные самки имеют ядерную ДНК саванного слона, они могут быть морфологически близки к саванным сородичам, а потому их не изгоняют из стада, когда они оказываются в зоне симпатрии.

Однако недавний подробный анализ четырех популяций слонов из контактных зон показал более сложную картину (рис. 1). Среди гибридных особей ни одна не оказалась гибридом первого поколения. Это доказывает, что гибриды саванных и лесных слонов фертильны. Однако, когда построили филогенетические деревья по маркерам митохондрий (строго материнское наследование) и Y-хромосом (строго отцовское), стало очевидно, что гибридизация шла в обоих направлениях: геномы и саванных, и лесных слонов образовали по две четко выделенные ветви, так что геномы гибридных особей могли принадлежать и одной, и другой.

Тем не менее все авторы последних исследований склонны считать лесных и саванных слонов разными видами [ , ]. По мнению Эрнста Майра, гибридизация в зоне контакта необязательно означает, что мы имеем дело с одним видом - гибридами. Генетическая цельность двух видов вполне может сохраняться . В случае африканских слонов это и наблюдается: вдали от зоны контакта нет никаких следов смешения, кроме митохондриальной интрогрессии, а морфологически виды, несмотря на нее, различны.

Бурые и белые медведи: один или два вида?

Ответ кажется очевидным. Конечно, два - достаточно сходить в зоопарк и посмотреть. Однако...

Ученые из Института арктической биологии Университета Аляски исследовали популяцию бурых медведей с архипелага Александра у берегов Аляски (с островов Адмиралти, Баранова и Чичагова, которые по первым латинским буквам называют островами АВС; рис. 2). В 1996 г. они заметили, что митохондриальные геномы этих медведей больше похожи на митохондриальные геномы белых медведей (Ursus maritimus ), чем бурых (U. arctos ) из других популяций . Несколько гипотез пытались это объяснить: происхождением белых медведей из древней прибрежной популяции бурых, которая сохранилась только на островах АВС , интрогрессией митохондриальных генов бурых медведей с островов АВС в геном белых и, наоборот, интрогрессией митохондриальных генов белых медведей в геном бурых [ , ]. Предположение, что белые медведи недавно произошли от бурых, казалось бы, подтвердилось, когда секвенировали митохондриальный геном древнего (130–110 тыс. лет назад) белого медведя из челюстной кости, найденной на архипелаге Шпицберген . Оказалось, этот геном очень близок к точке ответвления митохондриальных геномов современных белых медведей и ближайших к ним бурых медведей с островов ABC.

Получается, белые медведи - это не отдельный вид, а ветвь бурых медведей, которая отделилась сравнительно недавно, не более 150 тыс. лет назад, и сильно изменилась морфологически? Более обширный анализ митохондриальных геномов указывает на еще более фантастический сценарий. Действительно, митохондриальные геномы древних белых медведей из Скандинавии ближе всего к геномам медведей с островов АВС. В то же время митохондриальные геномы современных белых медведей существенно ближе к геномам вымершей ветви бурых медведей из Ирландии - расхождение этих двух линий произошло менее 40 тыс. лет назад (рис. 3). Следует отметить, что эти же данные интерпретировали заново уже иначе - как интрогрессию митохондриальных генов белого медведя в геном бурого . Правда, это не объясняет, почему эта ветка находится в глубине большой клады бурых медведей.

Анализ же ядерных геномов показывает, что белые медведи разделились с бурыми примерно 600 тыс. лет назад (рис. 4). Согласно этой работе, в ядерных геномах не наблюдается следов (недавних) гибридизаций между белыми и бурыми медведями, однако согласно другим исследованиям 5–10% ядерного генома бурых медведей с островов АВС происходят из генома белого медведя, а расхождение видов отнесено на 4 млн лет назад . Вообще, имеет смысл отметить важное последствие гибридизации, которое, однако, существенно затрудняет датировки: она ведет к тому, что различные геномные локусы имеют разную историю. Так, еще в одной работе расхождение бурых и белых медведей датируется примерно 400 тыс. лет назад, хотя также отмечен существенный поток генов белого медведя в геном медведей с островов АВС. Наконец, следует заметить, что во многих работах отмечается меньшая эффективная численность популяции белых медведей по сравнению с бурыми и эффект бутылочного горлышка - эпизоды резкого сокращения численности популяции после разделения с бурыми [ , , ]. Расхождение Y-хромосом белого и бурого медведя, для которых не заметно признаков интрогрессии, датируется приблизительно 1,1 млн лет назад (рис. 5). Вопрос о потоке ядерных генов бурого медведя в геном белого остается противоречивым: отмечались как следы слабого потока , так и полное его отсутствие . При этом поток генов белого медведя шел и в геномы материковых бурых медведей с Аляски, хотя и был слабее . Полный список оценок дан в обзоре .

Положительный отбор в геномах белых медведей затронул гены, связанные с формированием жировой ткани, развитием сердечной мышцы и свертываемостью крови, а также пигментацией меха . В то время как интрогрессии в геном бурого медведя подвергся ген ALDH7A1 , который регулирует осмотический стресс: это могло иметь приспособительное значение для прибрежной (островной) популяции бурых медведей .

Один из главных, принципиальных открытых вопросов, который слабо обсуждается в литературе, - произошло ли полное закрепление интрогрессировавших митохондриальных генов бурого медведя во всей популяции белых медведей под действием отбора или же в силу случайного дрейфа. Второй вопрос - была ли первоначально популяция бурых медведей с островов АВС популяцией белых медведей с почти тотальной интрогрессией ядерных генов бурых медведей за счет самцов, приплывавших с материка , или же популяцией бурых медведей, в геном которой интрогрессировали митохондриальные гены белых медведей в результате одной или нескольких гибридизаций с самками белого медведя.

Ко второму вопросу стоит добавить, что географическое распределение митохондриальных гаплотипов и белых медведей, и бурых высоко структурировано, что отражает привязанность самок к месту рождения, тогда как гаплотипы Y-хромосомы перемешаны из-за частых миграций самцов . С одной стороны, это косвенно свидетельствует о том, что случайный дрейф митохондриального генома должен быть затруднен. С другой стороны, его могли облегчать колебания численности и эффект бутылочного горлышка.

Хотя основные факты - полную интрогрессию митохондриальных генов бурого медведя в геном белого (возможно, неоднократную), значительный поток ядерных генов белого медведя в геном бурых медведей с островов АВС (и возможно, с Аляски), значительные колебания численности белых медведей - по-видимому, в целом можно считать твердо установленными, детали этой эволюционной истории нуждаются в прояснении. Как и всегда, нужно больше геномов - и современных, из разных популяций, и древних.

И снова люди

Пожалуй, одна из основных загадок геномной эволюции древних людей - происхождение денисовцев. Мы уже писали об этом вопросе в предыдущих статьях [ , ], однако полезно вернуться к нему именно в контексте обсуждаемых здесь несовпадений истории ядерных и митохондриальных геномов.

Денисовцы по ядерному геному - сестринская группа с неандертальцами, однако разошлись с ними вскоре после отделения от кроманьонцев. Оценки неточны, но в первом приближении разделение кроманьонцев и денисовцев + неандертальцев произошло примерно 650 тыс. лет назад, а денисовцев и неандертальцев - около 450 тыс. лет назад. Нам известен один ядерный геном из Денисовой пещеры на Алтае (возраст - примерно 50 тыс. лет) и несколько митохондриальных геномов оттуда же, самый старый из которых датируется 110 тыс. лет назад. Кроме того, известны фрагменты денисовского генома, которые сохранились в геномах австранезийцев. Денисовский вариант гена EPAS1 практически зафиксировался в популяции тибетцев. Все это указывает на обширность ареала денисовцев.

А вот по митохондриальному геному денисовцы разделились с ветвью неандертальцев + кроманьонцев около миллиона лет назад. Этот геном ближе всего к митохондриальному геному человека возрастом около 430 тыс. лет из пещеры Сима де лос Уэсос в Испании. Однако получается парадокс: ядерный геном из пещеры Сима де лос Уэсос ближе к неандертальскому, чем к денисовскому (авторы оригинальной статьи не приводят оценок времени расхождения). Таким образом, нет никакого простого сценария, который бы включал лишь интрогрессию, чтобы объяснить эти наблюдения. Авторы предполагают, что митохондриальные геномы из Денисовой пещеры и Сима де лос Уэсос - прямые потомки геномов древнего выходца из Африки, предка неандертальцев и денисовцев, кем бы он ни был с антропологической точки зрения, а митохондриальные геномы неандертальцев - результат поздней интрогрессии африканского же происхождения. В пользу этой гипотезы говорит то, что в геноме алтайского неандертальца обнаружены кроманьонские фрагменты, причем это следы гибридизации, предшествовавшей выходу из Африки предка современных европейцев и азиатов . Однако такие фрагменты отсутствуют в геномах других неандертальцев, в то время как митохондриальные геномы всех неандертальцев очевидно образуют единую ветвь на филогенетическом дереве. Кроме того, возникают проблемы с датировкой: носитель кроманьонских фрагментов в геноме алтайского неандертальца отделился от остальных кроманьонцев примерно 250 тыс. лет назад (до начала разделения современных популяций в Африке), а разделение митохондриальных ветвей кроманьонцев и неандертальцев датируется примерно 500 тыс. лет назад. Получается, это не могло быть результатом одного события. Альтернативное объяснение состоит в том, что источник митохондриальной ДНК денисовцев и человека из пещеры Сима де лос Уэсос - неизвестные представители рода Homo (H. erectus ?). Однако оно также не дает простого ответа на вопрос, где, когда и с кем произошла эта гибридизация.

Удивительно не то, что мы не знаем ответов на многие вопросы. Удивительно то, что мы можем эти вопросы задавать и надеемся получить на них ответы.

Н. В. Сернова благодарна своей маме Наталии Владимировне Серновой за вдохновение и помощь. М. С. Гельфанд благодарен фонду «Эволюция» за поддержку научно-популярных лекций, подготовка к которым помогла лучше осознать изложенный материал.

Работа выполнена при поддержке Российского научного фонда (проект 14-24-00155).

Литература
. Mallet J. Hybridization as an invasion of the genome // Trends Ecol. Evol. 2005. V. 20. P. 229–237.
. Toews D. P. L., Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals // Mol. Ecol. 2012. V. 21. P. 3907–3930.
. Ropiquet A., Hassanin A. Hybrid origin of the Pliocene ancestor of wild goats // Mol. Phylogenet. Evol. 2006. V. 41. P. 395–404.
. Cathey J. C., Bickham J. W., Patton J. C. Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in North American deer // Evolution . 1998. V. 52. P. 1224–1229.
. Yannic G., Dubey S., Hausser J. et al. Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group // Mol. Phylogenet. Evol. 2010. V. 57. P. 1062–1071.
. Edwards C. J., Suchard M. A., Lemey P. et al. Ancient hybridization and an Irish origin for the modern polar bear matriline // Curr. Biol. 2011. V. 21. P. 1251–1258.
. Debruyne R. A case study of apparent conflict between molecular phylogenies: the interrelationships of African elephants // Cladistics . 2005. V. 21. P. 31–50.
. Cyto-nuclear genomic dissociation and the African elephant species question // Quat. Int. 2007. V. 169–170. P. 4–16.
. Roca A. L., Ishida Y., Brandt A. L. et al. Elephant natural history: a genomic perspective // Annu. Rev. Anim. Biosci. 2015. V. 3. P. 139–167.
. Roca A. L., Georgiadis N., O’Brien S. J. Cytonuclear genomic dissociation in African elephant species // Nat. Genet. 2005. V. 37. P. 96–100.
. Grubb P., Groves C. P., Dudley J. P. et al. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900) // Elephant . 2000. V. 2. P. 1–4.

Геном митохондрий человека представлен кольцевой двухцелочечной молекулой ДНК, содержащей 16559 п.н. Доля митохондриальной ДНК от общего количества ДНК достигает 5%. Митохондриальная молекула ДНК состоит из тяжелой (Н) и легкой (L) - цепей. Цепи различаются по нуклеотидному составу. Н-цепь (heavy) содержит больше пурина, легкая L-цепь (ligbt) - больше пиримидина. Митохондриальный геном человека, как и других организмов, представляет собой полуавтономную генетическую систему. Большая часть генов человека локализована в хромосомах ядра, и меньшая - в митохондриальном геноме. 1987г-Адан Уилсон исследовал ДНК 147 представителей различных расс(женщин). Анализ показал, что все мтДНК можно представить как происходящие от одной предковой. Общаа праматерь, к которой восходят все типы мтДНК современных людей, жила в Восточной Африке менее 200тыс лет назад. Митохондрии - это внутриклеточные органеллы, имеющие небольшую собственную хромосому. В отличие от ядерной ДНК, которая содержит подавляющее большинство генов и в процессе полового размножения подвергается рекомбинации, так что потомки получают половину генов от отца, а вторую половину от матери, митохондрии и их ДНК ребёнок получает только из материнской яйцеклетки. Поскольку митохондриальная ДНК не подвергается рекомбинации, изменения в ней могут происходить исключительно посредством редких случайных мутаций. Митохондриа́льные заболева́ния - группа наследственных заболеваний, связанных с дефектами в функционировании митохондрий, приводящими к нарушениям энергетических функций в клетках эукариотов, в частности - человека. Митохондриальные заболевания обусловлены генетическими, структурными, биохимическими дефектами митохондрий, приводящими к нарушениям тканевого дыхания. Они передаются только по женской линии к детям обоих полов, так как сперматозоиды передают зиготе половину ядерного генома, а яйцеклетка поставляет и вторую половину генома, и митохондрии. Патологические нарушения клеточного энергетического обмена могут проявляться в виде дефектов различных звеньев в цикле Кребса, в дыхательной цепи, процессах бета-окисления и т. д. Эффекты митоходриальных заболеваний очень разнообразны. Из-за различного распределения дефектных митохондрий в разных органах, мутация у одного человека может привести к заболеванию печени, а у другого - к заболеванию мозга. Величина проявления дефекта может быть большой или малой, и она может существенно изменяться, медленно нарастая во времени. Некоторые небольшие дефекты приводят лишь к неспособности пациента выдерживать физическую нагрузку, соответствующую его возрасту, и не сопровождаются серьёзными болезненными проявлениями. Другие дефекты могут быть более опасны, приводя к серьёзной патологии.В общем случае, митоходриальные заболевания проявляются сильнее при локализации дефектных митохондрий в мышцах, мозге, нервной ткани, поскольку эти органы требуют больше всего энергии для выполнения соответствующих функций. Для постановки диагноза митохондриального заболевания важен комплексный генеалогический, клинический, биохимический, морфологический и генетический анализ

Что такое митохондриальная ДНК?

Митохондриальная ДНК (мтДНК) - представляет собой ДНК, расположенную в митохондриях, клеточных органеллах внутри эукариотических клеток, которые преобразуют химическую энергию из пищи в той форме, в которой клетки могут ее использовать - аденозинтрифосфата (АТФ). Митохондриальная ДНК являет собой лишь небольшую часть ДНК в эукариотической клетке; большую часть ДНК можно обнаружить в ядре клетки, у растений и водорослей, а также в пластидах, таких как хлоропласты.

У людей 16569 пар оснований митохондриальной ДНК кодируют всего 37 генов. Человеческая митохондриальная ДНК была первой значительной частью генома человека, подлежащей секвенированию. У большинства видов, включая людей, мтДНК наследуется только от матери.

Посколько мтДНК животных развивается быстрее, чем ядерные генетические маркеры, она представляет собой основу филогенетики и эволюционной биологии. Это стало важным пунктом в антропологии и биогеографии, так как позволяет изучать взаимосвязь популяций.

Гипотезы происхождения митохондрий

Ядерная и митохондриальная ДНК, как полагают, имеет разное эволюционное происхождение, причем мтДНК выведена из кольцевых геномов бактерий, которые были поглощены ранними предками современных эукариотических клеток. Эта теория называется эндосимбиотической теорией. По оценкам, каждая митохондрия содержит копии 2-10 мтДНК. В клетках существующих организмов подавляющее большинство белков, присутствующих в митохондриях (численность около 1500 различных типов у млекопитающих) кодируются ядерной ДНК, но гены для некоторых из них, если не большинство, считаются первоначально бактериальными, с тех пор они были перенесены в эукариотическое ядро ​​во время эволюции.

Обсуждаются причины, по которым митохондрии сохраняют некоторые гены. Существование у некоторых видов митохондриального происхождения органелл, не имеющих генома, позволяет предполагать, что возможна полная потеря гена, а перенос митохондриальных генов в ядро ​​имеет ряд преимуществ. Трудность ориентации дистанционно производимых гидрофобных белковых продуктов в митохондриях является одной из гипотез почему некоторые гены сохраняются в мтДНК. Совместная локализация для окислительно-восстановительного регулирования является другой теорией, ссылаясь на желательность локализованного контроля над митохондриальными механизмами. Недавний анализ широкого спектра митохондриальных геномов предполагает, что обе эти функции могут диктовать удержание митохондриального гена.

Генетическая экспертиза мтДНК

В большинстве многоклеточных организмов, мтДНК наследуется от матери (по материнской линии). Для этого механизмы включают простое разведение (яйцо содержит в среднем 200000 молекул мтДНК, тогда как здоровая сперма человека содержит в среднем 5 молекул), деградацию спермы мтДНК в мужских половых путях, в оплодотворенной яйцеклетке, и, по крайней мере, в нескольких организмах, неспособность мтДНК спермы проникать в яйцо. Каким бы ни был механизм, это однополярное наследование - наследования мтДНК, которое встречается у большинства животных, растений и грибов.

Наследование по материнской линии

При половом размножении митохондрии обычно унаследованы исключительно от матери; митохондрии в сперме млекопитающих обычно уничтожаются яйцеклеткой после оплодотворения. Кроме того, большинство митохондрий присутствует у основания хвоста сперматозоида, который используется для движения клеток спермы; иногда во время оплодотворения хвост теряется. В 1999 году сообщалось, что отцовские митохондрии сперматозоида (содержащие мтДНК) отмечены убиквитином для последующего разрушения внутри эмбриона. Некоторые методы оплодотворения in vitro, в частности, инъекция спермы в ооцит могут мешать этому.

Тот факт, что митохондриальная ДНК наследуется по материнской линии позволяет генеалогическим исследователям проследить материнскую линию далеко назад во времени. (Y-хромосомная ДНК наследуется по отцовской линии, используется аналогичным образом для определения патрилинейной истории.) Обычно это осуществляется на митохондриальной ДНК человека путем секвенирования гипервариабельной области управления (HVR1 или HVR2), а иногда и полной молекулы митохондриальной ДНК как генеалогический тест ДНК. Например, HVR1 состоит примерно из 440 пар оснований. Затем эти 440 пар сравниваются с контрольными областями других лиц (либо конкретных людей или субъектов в базе данных) для определения материнской линии. Чаще всего сравнение проводится с пересмотренной Кембриджской справочной последовательностью. Vilà et al. опубликовали исследования, посвященные матрилинейному сходству домашних собак и волков. Концепция Митохондриальной Евы основана на одном и том же типе анализа, пытается обнаружить происхождение человечества, отслеживает происхождение назад во времени.

мтДНК является высококонсервативной, а ее относительно медленные скорости мутаций (по сравнению с другими областями ДНК, такими как микросателлиты) делают ее полезной для изучения эволюционных отношений - филогении организмов. Биологи могут определить, а затем сравнить мтДНК последовательности у разных видов и использовать сравнения для построения эволюционного дерева для изученных видов. Однако, из-за медленных скоростей мутаций, которые он испытывает, часто трудно различать близкородственные виды в любой степени, поэтому необходимо использовать другие методы анализа.

Мутации митохондриальной ДНК

Можно ожидать, что лица, подвергающиеся однонаправленному наследованию и почти без рекомбинации, подвергаются трещотке Мюллера, накоплению вредных мутаций до тех пор, пока не будет потеряна функциональность. Популяции животных митохондрий избегают этого накопления из-за процесса развития, известного как узкое место мтДНК. Узкое место использует стохастические процессы в клетке для увеличения изменчивости клетки-к-клетке в мутантной нагрузке, когда организм развивается, таким образом, что одна яйцеклетка с некоторой долей мутантной мтДНК создает эмбрион, в котором разные клетки имеют различные мутантные нагрузки. Затем может быть выбран клеточный уровень, чтобы удалить эти клетки с большей мутантной мтДНК, что приведет к стабилизации или уменьшению мутантной нагрузки между поколениями. Механизм, лежащий в основе узкого места, обсуждается с недавней математической и экспериментальной метастадией и служит доказательством комбинации случайного разбиения мтДНК на клеточные деления и случайного оборота молекул мтДНК внутри клетки.

Наследование по отцовской линии

Двукратное однонаправленное наследование мтДНК наблюдается у двустворчатых моллюсков. У этих видов самки имеют только один тип мтДНК (F), тогда как самцы имеют мтДНК типа F в своих соматических клетках, но M тип мтДНК (которая может достигать 30% расходящихся) в клетках зародышевой линии. У материнских унаследованных митохондрий дополнительно сообщалось о некоторых насекомых, таких как плодовые мухи, пчелы и периодические цикады.

Мужское митохондриальное наследования было недавно обнаружено у циплят Плимут-Рок. Доказательства подтверждают редкие случаи мужского митохондриального наследования у некоторых млекопитающих. В частности, документально подтвержденные случаи существуют для мышей, где впоследствии были отвергнуты мужские наследственные митохондрии. Кроме того, он был обнаружен у овец, а также у клонированного крупного рогатого скота. Однажды был обнаружен в организме мужчины.

Несмотря на то, что многие из этих случаев связаны с клонированнием эмбрионов или последующим отторжением отцовской митохондрии, другие документируют наследование и стойкость in vivo в лабораторных условиях.

Митохондриальное донорство

Метод IVF, известный как митохондриальное донорство или митохондриальная заместительная терапия (МЗТ), приводит к потомству, содержащащему мтДНК от доноров женского пола и ядерной ДНК от матери и отца. В процедуре переноса шпинделя, ядро ​​яйца вводится в цитоплазму яйцеклетки от донора-самки, у которой было ​​удалено ядро, но которое по-прежнему содержит мтДНК женского донора. Композиционное яйцо затем оплодотворяется спермой мужчины. Эта процедура используется тогда, когда женщина с генетически неполноценными митохондриями, хочет производить потомство со здоровыми митохондриями. Первым известным ребенком, который родился в результате митохондриального пожертвования, был мальчик, родившийся у иорданской пары, в Мексике 6 апреля 2016 года.

Структура митохондриальной ДНК

В большинстве многоклеточных организмов, мтДНК - или митогеном - организована в виде круглой, циркулярно замкнутой, двухцепочной ДНК. Но во многих одноклеточных (например, тетрахимены или зеленой водоросли Chlamydomonas reinhardtii) и в редких случаях у многоклеточных организмов (например, у некоторых видов книдарий), мтДНК находится как линейно организованная ДНК. Большинство этих линейных мтДНК обладают теломеразо-независимыми теломерами (то есть концами линейной ДНК) с различными режимами репликации, которые сделали их интересными объектами исследования, так как многие из этих одноклеточных организмов с линейной мтДНК являются известными патогенами.

Для митохондриальной ДНК человека (и, вероятно, для метазоанов), 100-10000 отдельных копий мтДНК обычно присутствуют в соматической клетке (яйцеклетки и сперматозоиды являются исключениями). У млекопитающих каждая из двухцепочной молекулы круговой мтДНК состоит из 15000-17000 пар оснований. Две цепи мтДНК различаются по их нуклеотидному содержанию, богатая гуанидом прядь называется тяжелой цепью (или Н-цепью), а богатую цинозином нить называют легкой цепью (или L-нитью). Тяжелая цепь кодирует 28 генов, а легкая - 9 генов, в общей сложности 37 генов. Из 37 генов 13 предназначены для белков (полипептидов), 22 - для передачи РНК (тРНК) и два - для малых и больших субъединиц рибосомальной РНК (рРНК). Митогеном человека содержит перекрывающиеся гены (ATP8 и ATP6, а также ND4L и ND4: см. Карту генома человека митохондрий), которая редко встречается в геномах животных. 37-генная картина также встречается среди большинства метазоанов, хотя, в некоторых случаях, один или несколько из этих генов отсутствуют, а диапазон размеров мтДНК больше. Еще большее изменение содержания и размера генов мтДНК существует среди грибов и растений, хотя, как представляется, существует основное подмножество генов, которое присутствует во всех эукариотах (за исключением немногих, у которых вообще нет митохондрий). Некоторые виды растений имеют огромные мтДНК (столько, сколько 2500000 пар оснований на молекулу мтДНК), но, как ни удивительно, даже эти огромные мтДНК содержат одинаковое число и виды генов, как родственные растения с гораздо меньшими мтДНК.

Геном митохондрии огурца (Cucumis Sativus) состоит из трех кольцевых хромосом (длина 1556, 84 и 45 т.п.н.), которые полностью или в значительной степени автономны в отношении их репликации.

В митохондриальных геномах обнаружено шесть основных типов генома. Эти типы геномов были классифицированы «Колесниковым и Герасимовым (2012)» и различаются различными способами, такими как круговой, по сравнению с линейным геномом, размером генома, наличием интронов или подобных плазмидных структур, а также является ли генетический материал особой молекулой, коллекцией гомогенных или гетерогенных молекул.

Расшифровка генома животных

В клетках животных существует только один тип митохондриального генома. Этот геном содержит одну круговую молекулу между 11-28кбп генетического материала (тип 1).

Расшифровка генома растений

Существует три различных типа генома, содержащихся в растениях и грибах. Первый тип - это круговой геном, который имеет интроны (тип 2) длиной от 19 до 1000 кбп. Второй тип генома представляет собой круговой геном (около 20-1000 кбп), который также имеет плазмидную структуру (1kb) (тип 3). Конечный тип генома, который можно найти в растении и грибах представляет собой линейный геном, состоящий из гомогенных молекул ДНК (тип 5).

Расшифровка генома протистов

Протисты содержат самые разнообразные митохондриальные геномы, которые включают пять разных типов. Тип 2, тип 3 и тип 5, упомянутые в геноме растений и грибов, также существуют в некоторых простейших, а также в двух уникальных типах генома. Первым из них является гетерогенная коллекция круговых молекул ДНК (тип 4), а конечный тип генома, обнаруженный у протистов, представляет собой гетерогенную коллекцию линейных молекул (тип 6). Типы геномов 4 и 6 варьируются от 1 до 200 кб.,

Передача эндосимбиотических генов, процесс генов, кодируемых в митохондриальном геноме, переносится в основном геном клетки, вероятно, это объясняет почему более сложные организмы, например, люди, имеют меньшие митохондриальные геномы, чем более простые организмы, такие как простейшие.

Репликация митохондриальной ДНК

Митохондриальная ДНК реплицируется гамма-комплексом ДНК-полимеразы, который состоит из каталитической ДНК-полимеразы размером 140 кДа, кодируемой геном POLG и двумя вспомогательными субъединицами 55 кДа, закодированными геном POLG2. Репликационное устройство образовано ДНК-полимеразой, TWINKLE и митохондриальными SSB-белками. TWINKLE - это геликаза, которая разматывает короткие отрезки dsDNA в направлении от 5 "до 3".

Во время эмбриогенеза репликация мтДНК строго отрегулирована от оплодотворенного ооцита через предимплантационный эмбрион. Результативное сокращение количества клеток в каждой клетке мтДНК играет роль в узком месте митохондрий, использующем изменчивость клеток к клетке для улучшения наследования повреждающих мутаций. На стадии бластоцитов начало репликации мтДНК специфично для клеток трофтокодера. Напротив, клетки внутренней клеточной массы ограничивают репликацию мтДНК до тех пор, пока они не получат сигналы для дифференциации к конкретным типам клеток.

Транскрипция митохондриальной ДНК

В митохондриях животных каждая нить ДНК непрерывно транскрибируется и производит полицистронную молекулу РНК. Между большинством (но не во всех) белок-кодирующих областях присутствуют тРНК (см. Карту генома митохондрий человека). Во время транскрипции тРНК приобретает характерную L-форму, которая распознается и расщепляется конкретными ферментами. При обработке митохондриальной РНК отдельные фрагменты мРНК, рРНК и тРНК высвобождаются из первичного транскрипта. Таким образом, сложенные тРНК действуют как второстепенные пунктуации.

Митохондриальные заболевания

Понятие о том, что мтДНК особенно восприимчива к реактивным кислородным видам, генерируемым дыхательной цепью из-за его близости, остается спорным. мтДНК не накапливает больше окислительной базы, чем ядерная ДНК. Сообщалось, что, по крайней мере, некоторые виды повреждений окислительной ДНК восстанавливаются более эффективно в митохондриях, чем в ядре. мтДНК упаковывается с белками, которые, по-видимому, являются такими же защитными, как белки ядерного хроматина. Более того, митохондрии развили уникальный механизм, который поддерживает целостность мтДНК путем деградации чрезмерно поврежденных геномов с последующей репликацией интактной/восстановленной мтДНК. Этот механизм отсутствует в ядре и активируется несколькими копиями мтДНК, присутствующими в митохондриях. Результатом мутации в мтДНК может быть изменение инструкций кодирования для некоторых белков, что может влиять на метаболизм и/или пригодность организма.

Мутации митохондриальной ДНК могут привести к ряду заболеваний, включая непереносимость физической нагрузки и синдром Кирнс-Сайре (KSS), который заставляет человека терять полную функцию движений сердца, глаз и мышц. Некоторые данные свидетельствуют о том, что они могут вносить значительный вклад в процесс старения и связаны с возрастом патологии. В частности, в контексте заболевания, доля мутантных молекул мтДНК в клетке называется гетероплазмой. Распределения гетероплазмы внутри клетки и между клетками диктуют начало и тяжесть заболевания и находятся под влиянием сложных стохастических процессов внутри клетки и во время развития.

Мутации в митохондриальных тРНК могут быть ответственны за тяжелые заболевания, например, такие, как синдромы MELAS и MERRF.

Мутации в ядерных генах, кодирующие белки, которые используют митохондрии также могут способствовать митохондриальным заболеваниям. Эти болезни не соответствуют моделям наследования митохондрий, а вместо этого следуют менделевским схемам наследования.

В последнее время мутации в мтДНК были использованы для помощи диагностирования рака простаты у пациентов с отрицательной биопсией.

Механизм старения

Хотя идея является спорной, некоторые данные свидетельствуют о связи между старением и митохондриальной дисфункцией генома. В сущности, мутации в мтДНК нарушают тщательный баланс производства реактивного кислорода (ROS) и ферментативного ROS-продуцирования (ферментами, такими как супероксиддисмутаза, каталаза, глутатионпероксидаза и другие). Тем не менее, некоторые мутации, которые увеличивают производство ROS (например, за счет снижения антиоксидантной защиты) у червей увеличивают, а не уменьшают их долговечность. Кроме того, обнаженные мольные крысы, грызуны, размером с мышей, живут примерно в восемь раз дольше, чем мыши, несмотря на снижение, по сравнению с мышами, антиоксидантной защиты и повышенного окислительного повреждения биомолекул.

Однажды, как полагали, был положительный цикл обратной связи в работе («Vicious Cycle»); поскольку митохондриальная ДНК накапливает генетический ущерб, вызванный свободными радикалами, митохондрии теряют функцию и освобождают свободные радикалы в цитозоле. Снижение функции митохондрий снижает общую метаболическую эффективность. Однако, эта концепция была окончательно опровергнута, когда было продемонстрировано, что мыши, генетически измененные для накопления мутаций мтДНК с увеличенной скоростью, преждевременно стареют, но их ткани не вырабатывают больше ROS, как прогнозировалось гипотезой «Порочный цикл». Поддерживая связь между долговечностью и митохондриальной ДНК в некоторых исследованиях обнаружены корреляции между биохимическими свойствами митохондриальной ДНК и долговечностью видов. Проводятся обширные исследования для дальнейшего изучения этой связи и методов борьбы со старением. В настоящее время генная терапия и нутрицевтические добавки являются популярными областями текущих исследований. Bjelakovic et al. проанализировал результаты 78 исследований в период между 1977 и 2012 годами, в которых участвовало, в общей сложности, 296707 участников, пришел к выводу, что антиоксидантные добавки не уменьшают смертность от каких-либо причин и не продлевают продолжительность жизни, в то время как некоторые из них, такие как бета-каротин, витамин Е и более высокие дозы витамина А, могут фактически увеличить смертность.

Контрольные точки удаления часто встречаются внутри или рядом с регионами, показывающими неканонические (не-B) конформации, а именно шпильки, крестообразные и подобные клеверу элементы. Кроме того, есть данные, подтверждающие вовлечение спирально искажающих криволинейных областей и длинных G-тетрад в выявлении событий нестабильности. Кроме того, более высокие точки плотности последовательно наблюдались в областях с перекосом GC и в непосредственной близости от вырожденного фрагмента последовательности YMMYMNNMMHM.

Чем митохондриальная ДНК отличается от ядерной?

В отличие от ядерной ДНК, которая унаследована от обоих родителей и в которой гены перегруппированы в процессе рекомбинации, обычно нет изменений в мтДНК от родителя к потомству. Хотя мтДНК также рекомбинирует, она делает это с копиями себя в пределах той же митохондрии. Из-за этого частота мутаций животных мтДНК выше, чем у ядерной ДНК. мтДНК является мощным инструментом для отслеживания родословной через женщин (matrilineage) и использовалась в этой роли для отслеживания родословной многих видов сотни поколений назад.

Стремительная частота мутаций (у животных) делает мтДНК полезной для оценки генетических взаимоотношений отдельных индивидуумов или групп в пределах вида, а также для идентификации и количественного определения филогении (эволюционных отношений) среди разных видов. Для этого биологи определяют, а затем сравнивают последовательность мтДНК с разными индивидуумами или видами. Данные сравнений используются для построения сети взаимоотношений между последовательностями, которые обеспечивают оценку отношений между отдельными лицами или видами, из которых были взяты мтДНК. мтДНК может быть использована для оценки взаимосвязи между близкими и удаленными видами. Из-за высокой частоты мутаций мтДНК у животных, 3-й позиции кодонов меняться относительно быстро, и, таким образом, предоставляет информацию о генетических расстояний между близкородственными особями или видами. С другой стороны, скорость замещения mt-белков очень низкая, поэтому изменения аминокислот накапливаются медленно (с соответствующими медленными изменениями в положениях 1-го и 2-го кодонов) и, таким образом, они предоставляют информацию о генетических расстояниях отдаленных родственников. Статистические модели, которые учитывают частоту замещения среди позиций кодонов отдельно, могут поэтому использоваться для одновременной оценки филогении, которая содержит как близкие, так и отдаленные виды.

История открытия мтДНК

Митохондриальная ДНК была обнаружена в 1960-х годах Маргитом М. К. Насом и Сильваном Насом с помощью электронной микроскопии в качестве чувствительных к ДНКазе нитей внутри митохондрий, а также Эллен Хасбруннер, Ханс Таппи и Готфрид Шац из биохимических анализов на высокоочищенных митохондриальных фракциях.

Митохондриальная ДНК впервые была признана в 1996 году во время штата Теннесси против Пола Уэра. В 1998 году в судебном деле Содружества Пенсильвании против Патриции Линн Роррер, митохондриальная ДНК впервые была принята в качестве доказательства в штате Пенсильвания. Случай был показан в эпизоде ​​55 5-го сезона настоящей серии драматических криминалистических судебных дел (сезон 5).

Митохондриальная ДНК впервые была признана в Калифорнии в ходе успешного преследования Дэвида Вестерфилда за похищение и убийство в 2002 году 7-летней Даниэль ван Дам в Сан-Диего: она использовалась как для идентификации людей, так и собак. Это было первое испытание в США, которое разрешило собачью ДНК.

Базы данных по мтДНК

Было создано несколько специализированных баз данных для сбора митохондриальных последовательностей генома и другой информации. Хотя большинство из них сосредоточены на данных о последовательности, некоторые из них включают в себя филогенетическую или функциональную информацию.

  • MitoSatPlant: база данных микросателлитов митохондриальных виридиплантов.
  • MitoBreak: база данных контрольных точек митохондриальной ДНК.
  • MitoFish и MitoAnnotator: база данных о митохондриальном геноме рыб. Смотрите также Cawthorn и др.
  • MitoZoa 2.0: база данных для сравнительного и эволюционного анализа митохондриальных геномов (больше недоступна)
  • InterMitoBase: аннотированная база данных и платформа анализа белково-белковых взаимодействий для митохондрий человека (последний обновлен в 2010 году, но все еще является не доступным)
  • Mitome:база данных для сравнительной митохондриальной геномики у многоклеточных животных (больше недоступна)
  • MitoRes: ресурс ядерно-кодированных митохондриальных генов и их продуктов в метазоах (больше не обновлялся)

Существует несколько специализированных баз данных, которые сообщают о полиморфизмах и мутациях в митохондриальной ДНК человека вместе с оценкой их патогенности.

  • MITOMAP: компендиум полиморфизмов и мутаций в митохондриальной ДНК человека.
  • MitImpact: Сбор предсказанных прогнозов патогенности для всех изменений нуклеотидов, которые вызывают несинонимические замены в генах, кодирующих митохондриальные белки человека.


Загрузка...