electricschool.ru

Почему самолеты летят по дуге, а не по прямой - Hello world! — LiveJournal. С какой скоростью летит ракета в космос.? Почему ракеты взлетают по дуге

С какой скоростью летит ракета в космос.?

  1. абстрактная наука-пораждает иллюзии у зрителя
  2. Если на околоземную орбиту то 8 км в сек.
    Если за пределы то 11 км в сек. Примерно так.
  3. 33000 км/ч
  4. Точный – со скоростью 7,9 км/секунд выходя она (ракета) будет врашатся вокруг земли, если со скоростью 11 км/ секунд то это уже парабола, т. е. она чуть дальше поедить, есть вероятность что может и не верннутся
  5. 3-5км/с, учитывайте скорость вращения земли вокруг солнца
  6. Рекорд скорости космического аппарата (240 тыс. км/ч) был установлен американо-германским солнечным зондом Гелиос-Б, запущенным 15 января 1976 г.

    Самая высокая скорость, с которой когда либо передвигался человек (39897 км/ч), была развита основным модулем Аполлона 10 на высоте 121,9 км от поверхности Земли при возвращении экспедиции 26 мая 1969 г. На борту космического корабля были командир экипажа полковник ВВС США (ныне бригадный генерал) Томас Паттен Стаффорд (род. в Уэтерфорде, штат Оклахома, США, 17 сентября 1930 г.), капитан 3-го ранга ВМФ США Юджин Эндрю Сернан (род. в Чикаго, штат Иллинойс, США, 14 марта 1934 г.) и капитан 3-го ранга ВМС США (ныне капитан 1-го ранга в отставке) Джон Уотте Янг (род. в Сан Франциско, штат Калифорния, США, 24 сентября 1930 г.).

    Из женщин наивысшей скорости (28115 км/ч) достигла младший лейтенант ВВС СССР (ныне подполковник-инженер, летчик-космонавт СССР) Валентина Владимировна Терешкова (род. 6 марта 1937 г.) на советском космическом корабле Восток 6 16 июня 1963 г.

  7. 8 км/сек, чтобы преодолеть притяжение Земли
  8. в чрной дыре можно разагнатся до субсветовой скоросте
  9. Чушь, бездумно усвоеная со школы.
    8 или точнее 7,9 км/с – это первая космическая скорость – скорость горизонтального движения тела непосредственно над поверхностью Земли, при которой тело не падает, а остается спутником Земли с круговой орбитой на этой самой высоте, т. е. над поверхностью Земли (и это без учета сопротивления воздуха) . Таким образом ПКС – это абстрактная величина, связывающая между собой параметры космического тела: радиус и ускорение свободного падения на поверхности тела, и не имеющая никакого практического значения. На высоте 1000 км скорость кругового орбитального движения будет уже другой.

    Ракета наращивает скорость постепенно. Например Ракета-носитель Союз имеет через 117.6 с после старта на высоте 47.0 км имеет скорость 1.8 км/с, на 286.4 с полета на высоте 171.4 км, 3.9 км/с. Примерно через 8.8 мин. после старта на высоте 198.8 км скорость КА составляет 7.8 км/с.
    А вывод орбитального корабля на околоземную орбиту из верхней точки полета ракеты-носителя осуществляется уже активным маневрированием самого ОК. И скорость его зависит от параметров орбиты.

  10. Вс это бред. Важную роль играет не скорость, а сила тяги ракеты. При высоте в 35км начинается полноценный разгон до ПКС (первая космическая скорость) до 450км высоты, постепенно придавая курс направлению вращения Земли. Таким образом сохраняется высота и сила тяги во время преодоления плотных слов атмосферы. В двух словах – не нужно расгонять одновременно горизонтальную и вертикальную скорости, значительное отклонение в горизонтальном направлении происходит на 70% нужной высоты.
  11. на какой
    высоте летит космический корабль.

Межконтинентальная баллистическая ракета - абсолютное оружие. И это не преувеличение. МБР способна доставить свой груз в любую точку планеты и, достигнув цели с невероятной точностью, уничтожить практически что угодно. Итак, куда же несётся ужас на крыльях баллистической ракеты?

Рассмотрим в качестве основного примера самую «открытую» и бесхитростную современную МБР - Minuteman-III (индекс МО США LGM-30G). Ветерану американской стратегической триады скоро пятьдесят (первый пуск - в августе 1968 года, постановка на дежурство - 1970 год). Так сложилось, что на данный момент 400 таких «ополченцев» - единственные МБР сухопутного базирования в американском арсенале.
Когда на командный пункт поступит приказ, современная МБР шахтного базирования будет запущена в течение двух-трёх минут, причём большая часть этого времени уйдёт на верификацию команды и снятие многочисленных «предохранителей». Высокая скорость запуска является важным преимуществом шахтных ракет. Грунтовому ракетному комплексу или поезду требуется ещё несколько минут, чтобы остановиться, развернуть опоры, поднять ракету, - и только после этого произойдёт пуск. Что уж говорить о подводной лодке, которая (если заранее не находилась на минимальной глубине в полной готовности) начнёт запускать ракеты примерно через 15 минут.
Затем откроется крышка шахты, и из неё «выскочит» ракета. Современные отечественные комплексы используют так называемый миномётный или «холодный» старт, когда ракета выбрасывается в воздух отдельным небольшим зарядом и только потом запускает свои двигатели.
Затем для МБР наступает самое ответственное время - надо максимально быстро проскочить атмосферный участок над районом развёртывания. Именно там её ждёт сильная жара и ветер порывами до нескольких километров в секунду, поэтому активный этап полёта у МБР длится всего несколько минут.
У Minuteman-III первая ступень работает ровно минуту. За это время ракета поднимается на высоту 30 километров, двигаясь не вертикально, а под углом к земле. Вторая ступень, также за минуту работы, закидывает ракету уже на 70-90 километров - здесь всё сильно зависит от расстояния до цели. Поскольку твердотопливный двигатель выключить уже невозможно, приходится регулировать дальность крутизной траектории: нужно дальше - взлетаем выше. Третью ступень при запуске на минимальную дистанцию можно и вовсе не запускать, сразу приступив к разбрасыванию подарочков. В нашем случае (на видео ниже) она отработала, закончив трёхминутную работу самой ракеты.

К тому времени полезная нагрузка находится уже в космосе и движется почти с первой космической скоростью - самые дальнобойные МБР разгоняются до 7 км/с, а то и сильнее. Неудивительно, что с минимальными доработками тяжёлые МБР, такие как отечественная Р-36М/М2 или американская LGM-118 «Peacekeeper», успешно использовались в качестве лёгких ракет-носителей.

Дальше начинается самое интересное. В дело вступает так называемый «автобус» - платформа/ступень разведения боевых блоков. Он поочерёдно сбрасывает боевые блоки, направляя их на верный путь. Это настоящее техническое чудо - «автобус» делает всё настолько ровно, что небольшие конусы без систем управления, пролетев над морями и континентами половину земного шара, укладываются в радиус всего в несколько сотен метров! Такая меткость обеспечивается сверхточной и безумно дорогой инерционной навигационной системой. На спутниковые системы полагаться нельзя, хотя как вспомогательное средство используются и они. И на этой стадии уже нет никаких сигналов самоликвидации - слишком велик риск, что враг сможет их сымитировать.

Вместе с боевыми блоками «автобус» также закидывает вражеские ПРО ложными целями. Поскольку возможности платформы ограничены как по времени, так и по запасу топлива, блоки от одной ракеты могут поразить цели лишь в одном регионе. По слухам, наши недавно испытали новую модификацию «Ярса» сразу с несколькими «автобусами», индивидуальными для каждого блока, - и это уже снимает ограничение.

Блок прячется среди множества ложных целей, его место в боевом порядке неизвестно и выбирается ракетой случайным образом. Количество ложных целей может превышать сотню. Кроме того, разбрасывается ещё и целая россыпь средств создания радиолокационных помех - как пассивных (пресловутые облака нарезанной фольги), так и активных, создающих для радаров противника дополнительный «шум». Интересно, что созданные ещё в 1970–80-е годы средства до сих пор легко преодолевают ПРО.

Ну, а дальше, после относительно тихой фазы путешествия, боевой блок входит в атмосферу и устремляется к цели. Весь полёт занимает на межконтинентальной дальности около получаса. В зависимости от типа цели возможен подрыв либо на заданной высоте (оптимально для поражения города), либо на поверхности. Некоторые боевые блоки, обладающие достаточной прочностью, могут поражать даже подземные цели, а другие перед входом в атмосферу способны оценивать своё отклонение от идеальной траектории и корректировать высоту подрыва. Блоки, состоящие на вооружении, не маневрируют самостоятельно, но их появление - дело ближайшего будущего.

Чем внимательнее рассматриваешь МБР, тем яснее понимаешь, что по техническому совершенству и сложности она не уступает «настоящим» космическим ракетам-носителям. И это неудивительно - ведь нельзя кому попало доверять сверхбыструю доставку маленькой и живущей всего мгновение звезды.

Александр Ермаков

Вот прицепился я к этим самолетам, третий день из головы не выходят.
Сегодня узнав о сервисе flightradar24.com стоял у окна и смотрел как на горизонте появляется самолет летящий. Поигрался немного, как ребенок, в новую игрушку и вроде отпустило))))

Но увидел я случайно что самолет летящий из Дубай в Нью-Йорк пролетает рядом с Москвой, да и маршрут его такая нереальная дуга и задумался я а почему же это.

Подумал я, в интернете поискал и все банально сводится к тому что земля это шар и эта дуга это и есть кратчайшее расстояние. Но не укладывается в голове оно как-то.
Решаил я провести независимое расследование.

Взял грейпфрут и отметил на нем условно экватор и две точки в разных его концах:




Условно представил я, что грейпфрут он как планета имеет форму шара. И провел я между пунктами А и В прямую на этом шаре которая является кратчайшим расстоянием:

Получилось вот что:

Потом почистил я его и распрямил, примерно как карта планеты нашей:

Ивот она и получилась - дуга, от пункта А до пункта В.

Просто когда мы смотрим на карте мы оцениваем расстояния все по параллелям, это те окружности которые параллельны экватору. (Возможно я так один только делал а вы все по другому...) А если взять в руки шар, глобус если есть, и на нем нарисовать кратчайшее расстояние, то будет совсем не так как мозг представляет.

Расстояние это не всегда, кстати, является кратчайшим. Там еще есть всякие ветра разные и иногда саолет летит по ветру, а иногда наоборот облетает встречные потоки ветра, в результате чего траектория маршрута самолета и отклоняется от кратчайшей.

Так например, как я опять выяснил, в атмосфере земли и других плнет есть некие реактивные потоки воздуха (Jet stream). И в авиации их используют при перелетах для сокращения времени полета и для экономии топлива.

Вот так выглядит траектория перелета между Токио и Лос Анжелисом:

Все написанное выше это чисто мои домыслы и размышления, никак не притендующие на истинну. Да и опыт с грейпфрутом спроведен с большой погрешностью и отклонениями в измерениях. Просто наглядно показывающий почему траектория самолета выглядит на карте как дуга.

Ракеты поднимаются в космическое пространство за счет сжигания жидких или твердых топлив. После воспламенения в высокопрочных камерах сгорания эти топлива, обычно состоящие из горючего и окислителя, выделяют огромное количество тепла, создавая очень высокое давление, под действием которого продукты сгорания движутся в сторону земной поверхности через расширяющиеся сопла.

Так как продукты сгорания истекают из сопел вниз, ракета поднимается вверх. Это явление объясняется третьим законом Ньютона, в соответствии с которым для каждого действия существует равное по величине и противоположное по направлению противодействие. Поскольку двигателями на жидком топливе легче управлять, чем твердотопливными, их обычно используют в космических ракетах, в частности, в показанной на рисунке слева ракете Сатурн-5. Эта трехступенчатая ракета сжигает тысячи тонн жидкого водорода и кислорода для вывода космического корабля на орбиту.

Для быстрого подъема вверх тяга ракеты должна превышать ее вес примерно на 30 процентов. При этом, если космический корабль должен выйти на околоземную орбиту, он должен развить скорость около 8 километров в секунду. Тяга ракет может доходить до нескольких тысяч тонн.

  1. Пять двигателей первой ступени поднимают ракету на высоту 50-80 километров. После того как топливо первой ступени будет израсходовано, она отделится и включатся двигатели второй ступени.
  2. Примерно через 12 минут после старта вторая ступень доставляет ракету на высоту более 160 километров, после чего отделяется с пустыми баками. Также отделяется ракета аварийного спасения.
  3. Разгоняемая единственным двигателем третьей ступени, ракета переводит космический корабль «Аполлон» на временную околоземную орбиту, высотой около 320 километров. После непродолжительного перерыва двигатели включаются снова, увеличивая скорость космического корабля примерно до 11 километров в секунду и направляя его в сторону Луны.


Двигатель F-1 первой ступени сжигает топливо и выводит продукты сгорания в окружающую среду.

После запуска на орбиту космический корабль «Аполлон» получает разгонный импульс в сторону Луны. Затем третья ступень отделяется и космический корабль, состоящий из командного и лунного модулей, выходит на 100-километровую орбиту вокруг Луны, после чего лунный модуль совершает посадку. Доставив побывавших на Луне космонавтов на командный модуль, лунный модуль отделяется и прекращает свое функционирование.

Дата

02 Окт 2013

Ракеты поднимаются в космическое пространство за счет сжигания жидких или твердых топлив. После воспламенения в высокопрочных камерах сгорания эти топлива, обычно состоящие из горючего и окислителя, выделяют огромное количество тепла, создавая очень высокое давление, под действием которого продукты сгорания движутся в сторону земной поверхности через расширяющиеся сопла.

Так как продукты сгорания истекают из сопел вниз, ракета поднимается вверх. Это явление объясняется третьим законом Ньютона, в соответствии с которым для каждого действия существует равное по величине и противоположное по направлению противодействие. Поскольку двигателями на жидком топливе легче управлять, чем твердотопливными, их обычно используют в космических ракетах, в частности, в показанной на рисунке слева ракете Сатурн-5. Эта трехступенчатая ракета сжигает тысячи тонн жидкого водорода и кислорода для вывода космического корабля на орбиту.

Для быстрого подъема вверх тяга ракеты должна превышать ее вес примерно на 30 процентов. При этом, если космический корабль должен выйти на околоземную орбиту, он должен развить скорость около 8 километров в секунду. Тяга ракет может доходить до нескольких тысяч тонн.

  1. Пять двигателей первой ступени поднимают ракету на высоту 50-80 километров. После того как топливо первой ступени будет израсходовано, она отделится и включатся двигатели второй ступени.
  2. Примерно через 12 минут после старта вторая ступень доставляет ракету на высоту более 160 километров, после чего отделяется с пустыми баками. Также отделяется ракета аварийного спасения.
  3. Разгоняемая единственным двигателем третьей ступени, ракета переводит космический корабль «Аполлон» на временную околоземную орбиту, высотой около 320 километров. После непродолжительного перерыва двигатели включаются снова, увеличивая скорость космического корабля примерно до 11 километров в секунду и направляя его в сторону Луны.


Двигатель F-1 первой ступени сжигает топливо и выводит продукты сгорания в окружающую среду.

После запуска на орбиту космический корабль «Аполлон» получает разгонный импульс в сторону Луны. Затем третья ступень отделяется и космический корабль, состоящий из командного и лунного модулей, выходит на 100-километровую орбиту вокруг Луны, после чего лунный модуль совершает посадку. Доставив побывавших на Луне космонавтов на командный модуль, лунный модуль отделяется и прекращает свое функционирование.



Загрузка...